This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
llvm-svn: 157634
The test case feeds the following into InstCombine's visitSelect:
%tobool8 = icmp ne i32 0, 0
%phitmp = select i1 %tobool8, i32 3, i32 0
Then instcombine replaces the right side of the switch with 0, doesn't notice
that nothing changes and tries again indefinitely.
This fixes PR12897.
llvm-svn: 157587
Attribute bits above 1<<30 are now encoded correctly. Additionally,
the encoding/decoding functionality has been hoisted to helper functions
in Attributes.h in an effort to help the encoding/decoding to stay in
sync with the Attribute bitcode definitions.
llvm-svn: 157581
definition in the map before calling itself to retrieve the
DIE for the declaration. Without this change, if this causes
getOrCreateSubprogramDIE to be recursively called on the definition,
it will create multiple DIEs for that definition. Fixes PR12831.
llvm-svn: 157541
SimplifyCFG tends to form a lot of 2-3 case switches when merging branches. Move
the most likely condition to the front so it is checked first and the others can
be skipped. This is currently not as effective as it could be because SimplifyCFG
destroys profiling metadata when merging branches and switches. Merging branch
weight metadata is tricky though.
This code touches at most 3 cases so I didn't use a proper sorting algorithm.
llvm-svn: 157521
then it doesn't alter the instructions composing it, however it would continue
to move the instructions to just before the expression root. Ensure it doesn't
move them either, so now it really does nothing if there is nothing to do. That
commit also ensured that nsw etc flags weren't cleared if the expression was not
being changed. Tweak this a bit so that it doesn't clear flags on the initial
part of a computation either if that part didn't change but later bits did.
llvm-svn: 157518
with arbitrary topologies (previously it would give up when hitting a diamond
in the use graph for example). The testcase from PR12764 is now reduced from
a pile of additions to the optimal 1617*%x0+208. In doing this I changed the
previous strategy of dropping all uses for expression leaves to one of dropping
all but one use. This works out more neatly (but required a bunch of tweaks)
and is also safer: some recently fixed bugs during recursive linearization were
because the linearization code thinks it completely owns a node if it has no uses
outside the expression it is linearizing. But if the node was also in another
expression that had been linearized (and thus all uses of the node from that
expression dropped) then the conclusion that it is completely owned by the
expression currently being linearized is wrong. Keeping one use from within each
linearized expression avoids this kind of mistake.
llvm-svn: 157467
LowerSwitch::Clusterify : main functinality was replaced with CRSBuilder::optimize, so big part of Clusterify's code was reduced.
test/Transform/LowerSwitch/feature.ll - this test was refactored: grep + count was replaced with FileCheck usage.
llvm-svn: 157384
Live ranges with a constrained register class may benefit from splitting
around individual uses. It allows the remaining live range to use a
larger register class where it may allocate. This is like spilling to a
different register class.
This is only attempted on constrained register classes.
<rdar://problem/11438902>
llvm-svn: 157354
CHECK. The latter error was hidden by the former, and the test harness
used by e.g. "make check" silently ignored that opt was printing an
error message about an unknown flag instead of running on the test file.
llvm-svn: 157341
Now that the coalescer keeps live intervals and machine code in sync at
all times, it needs to deal with identity copies differently.
When merging two virtual registers, all identity copies are removed
right away. This means that other identity copies must come from
somewhere else, and they are going to have a value number.
Deal with such copies by merging the value numbers before erasing the
copy instruction. Otherwise, we leave dangling value numbers in the live
interval.
This fixes PR12927.
llvm-svn: 157340
leader table. That's because it wasn't expecting instructions to turn up as
leader for a value number that is not its own, but equality propagation could
create this situation. One solution is to have the leader table use a WeakVH
but this slows down GVN by about 5%. Instead just have equality propagation not
add instructions to the leader table, only constants and arguments. In theory
this might cause GVN to run more (each time it changes something it runs again)
but it doesn't seem to occur enough to cause a slow down.
llvm-svn: 157251
may be RAUW'd by the recursive call to LegalizeOps; instead, retrieve
the other operands when calling UpdateNodeOperands. Fixes PR12889.
llvm-svn: 157162
Dead code elimination during coalescing could cause a virtual register
to be split into connected components. The following rewriting would be
confused about the already joined copies present in the code, but
without a corresponding value number in the live range.
Erase all joined copies instantly when joining intervals such that the
MI and LiveInterval representations are always in sync.
llvm-svn: 157135
The late dead code elimination is no longer necessary.
The test changes are cause by a register hint that can be either %rdi or
%rax. The choice depends on the use list order, which this patch changes.
llvm-svn: 157131
getUDivExpr attempts to simplify by checking for overflow.
isLoopEntryGuardedByCond then evaluates the loop predicate which
may lead to the same getUDivExpr causing endless recursion.
Fixes PR12868: clang 3.2 segmentation fault.
llvm-svn: 157092
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
llvm-svn: 157062
non-profitable commute using outdated info. The test case would still fail
because of poor pre-RA schedule. That will be fixed by MI scheduler.
rdar://11472010
llvm-svn: 157038
This is the same as the other tests: Clever tricks are required to make
the arguments and return value line up in a single-instruction function.
It rarely happens in real life.
We have plenty other examples of this behavior.
llvm-svn: 157030
This option has been disabled for a while, and it is going away so I can
clean up the coalescer code.
The tests that required physreg joining to be enabled were almost all of
the form "tiny function with interference between arguments and return
value". Such functions are usually inlined in the real world.
The problem exposed by phys_subreg_coalesce-3.ll is real, but fairly
rare.
llvm-svn: 157027
the 0b10 mask encoding bits. Make MSR APSR writes without a _<bits> qualifier
an alias for MSR APSR_nzcvq even though ARM as deprecated it use. Also add
support for suffixes (_nzcvq, _g, _nzcvqg) for APSR versions. Some FIXMEs in
the code for better error checking when versions shouldn't be used.
rdar://11457025
llvm-svn: 157019
- Added HOST_ARCH to Makefile.config.in
The HOST_ARCH will be used by MCJIT tests filter, because MCJIT supported only x86 and ARM architectures now.
llvm-svn: 157015
options, to enable easier testing of the innards of LLVM that are
enabled by such optimization strategies.
Note that this doesn't provide the (much needed) function attribute
support for -Oz (as opposed to -Os), but still seems like a positive
step to better test the logic that Clang currently relies on.
Patch by Patrik Hägglund.
llvm-svn: 156913
It is now possible to coalesce weird skewed sub-register copies by
picking a super-register class larger than both original registers. The
included test case produces code like this:
vld2.32 {d16, d17, d18, d19}, [r0]!
vst2.32 {d18, d19, d20, d21}, [r0]
We still perform interference checking as if it were a normal full copy
join, so this is still quite conservative. In particular, the f1 and f2
functions in the included test case still have remaining copies because
of false interference.
llvm-svn: 156878
so that it can be reused in MemCpyOptimizer. This analysis is needed to remove
an unnecessary memcpy when returning a struct into a local variable.
rdar://11341081
PR12686
llvm-svn: 156776
Ordinary patch for PR1255.
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
llvm-svn: 156704
- Remove code which lowers pseudo SETGP01.
- Fix LowerSETGP01. The first two of the three instructions that are emitted to
initialize the global pointer register now use register $2.
- Stop emitting .cpload directive.
llvm-svn: 156689
pointer register.
This is the first of the series of patches which clean up the way global pointer
register is used. The patches will make the following improvements:
- Make $gp an allocatable temporary register rather than reserving it.
- Use a virtual register as the global pointer register and let the register
allocator decide which register to assign to it or whether spill/reloads are
needed.
- Make sure $gp is valid at the entry of a called function, which is necessary
for functions using lazy binding.
- Remove the need for emitting .cprestore and .cpload directives.
llvm-svn: 156671
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
llvm-svn: 156599
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
llvm-svn: 156550
Instruction::IsIdenticalToWhenDefined.
This manifested itself when inlining two calls to the same function. The
inlined function had a switch statement that returned one of a set of
global variables. Without this modification, the two phi instructions that
chose values from the branches of the switch instruction inlined from the
callee were considered equivalent and jump-threading replaced a load for the
first switch value with a phi selecting from the second switch, thereby
producing incorrect code.
This patch has been tested with "make check-all", "lnt runteste nt", and
llvm self-hosted, and on the original program that had this problem,
wireshark.
<rdar://problem/11025519>
llvm-svn: 156548
refactor code a bit to enable future changes to support run-time information
add support to compute allocation sizes at run-time if penalty > 1 (e.g., malloc(x), calloc(x, y), and VLAs)
llvm-svn: 156515
replace the operands of expressions with only one use with undef and generate
a new expression for the original without using RAUW to update the original.
Thus any copies of the original expression held in a vector may end up
referring to some bogus value - and using a ValueHandle won't help since there
is no RAUW. There is already a mechanism for getting the effect of recursion
non-recursively: adding the value to be recursed on to RedoInsts. But it wasn't
being used systematically. Have various places where recursion had snuck in at
some point use the RedoInsts mechanism instead. Fixes PR12169.
llvm-svn: 156379
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
llvm-svn: 156374
This patch will optimize -(x != 0) on X86
FROM
cmpl $0x01,%edi
sbbl %eax,%eax
notl %eax
TO
negl %edi
sbbl %eax %eax
In order to generate negl, I added patterns in Target/X86/X86InstrCompiler.td:
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
rdar: 10961709
llvm-svn: 156312
The primitive conservative heuristic seems to give a slight overall
improvement while not regressing stuff. Make it available to wider
testing. If you notice any speed regressions (or significant code
size regressions) let me know!
llvm-svn: 156258
This came up when a change in block placement formed a cmov and slowed down a
hot loop by 50%:
ucomisd (%rdi), %xmm0
cmovbel %edx, %esi
cmov is a really bad choice in this context because it doesn't get branch
prediction. If we emit it as a branch, an out-of-order CPU can do a better job
(if the branch is predicted right) and avoid waiting for the slow load+compare
instruction to finish. Of course it won't help if the branch is unpredictable,
but those are really rare in practice.
This patch uses a dumb conservative heuristic, it turns all cmovs that have one
use and a direct memory operand into branches. cmovs usually save some code
size, so we disable the transform in -Os mode. In-Order architectures are
unlikely to benefit as well, those are included in the
"predictableSelectIsExpensive" flag.
It would be better to reuse branch probability info here, but BPI doesn't
support select instructions currently. It would make sense to use the same
heuristics as the if-converter pass, which does the opposite direction of this
transform.
Test suite shows a small improvement here and there on corei7-level machines,
but the actual results depend a lot on the used microarchitecture. The
transformation is currently disabled by default and available by passing the
-enable-cgp-select2branch flag to the code generator.
Thanks to Chandler for the initial test case to him and Evan Cheng for providing
me with comments and test-suite numbers that were more stable than mine :)
llvm-svn: 156234
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
llvm-svn: 156118
to catch cases like:
%reg1024<def> = MOV r1
%reg1025<def> = MOV r0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
By commuting ADD, it let coalescer eliminate all of the copies. However, there
was a bug in the heuristics where it ended up commuting the ADD in:
%reg1024<def> = MOV r0
%reg1025<def> = MOV 0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
That did no benefit but rather ensure the last MOV would not be coalesced.
rdar://11355268
llvm-svn: 156048
Expressions for movw/movt don't always have an :upper16: or :lower16:
on them and that's ok. When they don't, it's just a plain [0-65536]
immediate result, effectively the same as a :lower16: variant kind.
rdar://10550147
llvm-svn: 155941
Previously, an unsupported/unknown assembler directive issued a warning.
That's generally unsafe, and inconsistent with the behaviour of pretty
much every system assembler. Now that the MC assemblers are mature
enough to be the default on multiple targets, it's reasonable to
issue errors for these.
For target or platform directives that need to stay warnings, we
should add explicit handlers for them in, e.g., ELFAsmParser.cpp,
DarwinAsmParser.cpp, et. al., and issue the warning there.
rdar://9246275
llvm-svn: 155926
This patch will optimize the following cases on X86
(a > b) ? (a-b) : 0
(a >= b) ? (a-b) : 0
(b < a) ? (a-b) : 0
(b <= a) ? (a-b) : 0
FROM
movl %edi, %ecx
subl %esi, %ecx
cmpl %edi, %esi
movl $0, %eax
cmovll %ecx, %eax
TO
xorl %eax, %eax
subl %esi, %edi
cmovll %eax, %edi
movl %edi, %eax
rdar: 10734411
llvm-svn: 155919
<rdar://problem/11291436>.
This is a second attempt at a fix for this, the first was r155468. Thanks
to Chandler, Bob and others for the feedback that helped me improve this.
llvm-svn: 155866
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
(this time, actually commit what was reviewed!)
llvm-svn: 155825
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
llvm-svn: 155824
Allow the "SplitCriticalEdge" function to split the edge to a landing pad. If
the pass is *sure* that it thinks it knows what it's doing, then it may go ahead
and specify that the landing pad can have its critical edge split. The loop
unswitch pass is one of these passes. It will split the critical edges of all
edges coming from a loop to a landing pad not within the loop. Doing so will
retain important loop analysis information, such as loop simplify.
llvm-svn: 155817
This time, also fix the caller of AddGlue to properly handle
incomplete chains. AddGlue had failure modes, but shamefully hid them
from its caller. It's luck ran out.
Fixes rdar://11314175: BuildSchedUnits assert.
llvm-svn: 155749
Make sure when parsing the Thumb1 sp+register ADD instruction that
the source and destination operands match. In thumb2, just use the
wide encoding if they don't. In Thumb1, issue a diagnostic.
rdar://11219154
llvm-svn: 155748
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
llvm-svn: 155745
x == -y --> x+y == 0
x != -y --> x+y != 0
On x86, the generated code goes from
negl %esi
cmpl %esi, %edi
je .LBB0_2
to
addl %esi, %edi
je .L4
This case is correctly handled for ARM with "cmn".
Patch by Manman Ren.
rdar://11245199
PR12545
llvm-svn: 155739
Target specific types should not be vectorized. As a practical matter,
these types are already register matched (at least in the x86 case),
and codegen does not always work correctly (at least in the ppc case,
and this is not worth fixing because ppc_fp128 is currently broken and
will probably go away soon).
llvm-svn: 155729
* Model FPSW (the FPU status word) as a register.
* Add ISel patterns for the FUCOM*, FNSTSW and SAHF instructions.
* During Legalize/Lowering, build a node sequence to transfer the comparison
result from FPSW into EFLAGS. If you're wondering about the right-shift: That's
an implicit sub-register extraction (%ax -> %ah) which is handled later on by
the instruction selector.
Fixes PR6679. Patch by Christoph Erhardt!
llvm-svn: 155704
instead of getAggregateElement. This has the advantage of being
more consistent and allowing higher-level constant folding to
procede even if an inner extract element cannot be folded.
Make ConstantFoldInstruction call ConstantFoldConstantExpression
on the instruction's operands, making it more consistent with
ConstantFoldConstantExpression itself. This makes sure that
ConstantExprs get TargetData-aware folding before being handed
off as operands for further folding.
This causes more expressions to be folded, but due to a known
shortcoming in constant folding, this currently has the side effect
of stripping a few more nuw and inbounds flags in the non-targetdata
side of constant-fold-gep.ll. This is mostly harmless.
This fixes rdar://11324230.
llvm-svn: 155682
DAGCombine strangeness may result in multiple loads from the same
offset. They both may try to glue themselves to another load. We could
insist that the redundant loads glue themselves to each other, but the
beter fix is to bail out from bad gluing at the time we detect it.
Fixes rdar://11314175: BuildSchedUnits assert.
llvm-svn: 155668
On some cores it's a bad idea for performance to mix VFP and NEON instructions
and since these patterns are NEON anyway, the NEON load should be used.
llvm-svn: 155630
elements to minimize the number of multiplies required to compute the
final result. This uses a heuristic to attempt to form near-optimal
binary exponentiation-style multiply chains. While there are some cases
it misses, it seems to at least a decent job on a very diverse range of
inputs.
Initial benchmarks show no interesting regressions, and an 8%
improvement on SPASS. Let me know if any other interesting results (in
either direction) crop up!
Credit to Richard Smith for the core algorithm, and helping code the
patch itself.
llvm-svn: 155616
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
llvm-svn: 155601
When an instruction match is found, but the subtarget features it
requires are not available (missing floating point unit, or thumb vs arm
mode, for example), issue a diagnostic that identifies what the feature
mismatch is.
rdar://11257547
llvm-svn: 155499
constants in C++11 mode. I have no idea why it required such particular
circumstances to get here, the code seems clearly to rely upon unchecked
assumptions.
Specifically, when we decide to form an index into a struct type, we may
have gone through (at least one) zero-length array indexing round, which
would have left the offset un-adjusted, and thus not necessarily valid
for use when indexing the struct type.
This is just an canonicalization step, so the correct thing is to refuse
to canonicalize nonsensical GEPs of this form. Implemented, and test
case added.
Fixes PR12642. Pair debugged and coded with Richard Smith. =] I credit
him with most of the debugging, and preventing me from writing the wrong
code.
llvm-svn: 155466
using the pattern (vbroadcast (i32load src)). In some cases, after we generate
this pattern new users are added to the load node, which prevent the selection
of the blend pattern. This commit provides fallback patterns which perform
in-vector broadcast (using in-vector vbroadcast in AVX2 and pshufd on AVX1).
llvm-svn: 155437
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
llvm-svn: 155395
test suite failures. The failures occur at each stage, and only get
worse, so I'm reverting all of them.
Please resubmit these patches, one at a time, after verifying that the
regression test suite passes. Never submit a patch without running the
regression test suite.
llvm-svn: 155372
Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
llvm-svn: 155362
1) Make the checked assertions a bit more precise. We really want the
canonical forms coming out of reassociate to be exactly what is
expected.
2) Remove other passes, and switch the test to actually directly check
that reassociate makes the important transforms and
canonicalizations.
3) Fold in a related test case now that we're using FileCheck. Make the
same tidying changes to it.
llvm-svn: 155311
The X86 target is editing the selection DAG while isel is selecting
nodes following a topological ordering. When the DAG hacking triggers
CSE, nodes can be deleted and bad things happen.
llvm-svn: 155257
Use the new TwoOperandAliasConstraint to handle lots of the two-operand aliases
for NEON instructions. There's still more to go, but this is a good chunk of
them.
llvm-svn: 155210
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
llvm-svn: 155181