Function call can appear in the arguments of another function call, eg.:
foo(bar());
This patch adds support for such cases.
Patch by Ivan Sidorenko!
Differential revision: https://reviews.llvm.org/D28905
llvm-svn: 293280
another declaration, ensure we actually serialize / deserialize that
declaration.
Before this patch, if another copy of the typedef were merged with the parsed
version, we would emit type information referring to the merged version and
consequently emit nothing about the parsed anonymous struct. This resulted in
us losing information, particularly the visible merged module set for the
parsed definition. Force that information to be emitted and to be loaded when
the typedef is used.
llvm-svn: 293219
This change adds a new type node, DeducedTemplateSpecializationType, to
represent a type template name that has been used as a type. This is modeled
around AutoType, and shares a common base class for representing a deduced
placeholder type.
We allow deduced class template types in a few more places than the standard
does: in conditions and for-range-declarators, and in new-type-ids. This is
consistent with GCC and with discussion on the core reflector. This patch
does not yet support deduced class template types being named in typename
specifiers.
llvm-svn: 293207
Turning on the warning by default helps the users as it's a common
mistake to capture out-parameters in a block without ensuring the object
assigned doesn't get released.
rdar://problem/30200058
llvm-svn: 293199
even in the presence of nullability qualifiers.
This commit fixes bugs in r285031 where -Wblock-capture-autoreleasing
wouldn't issue warnings when the function parameters were annotated
with nullability qualifiers. Specifically, look through the sugar and
see if there is an AttributedType of kind attr_objc_ownership to
determine whether __autoreleasing was explicitly specified or implicitly
added by the compiler.
rdar://problem/30193488
llvm-svn: 293194
This is a simple patch to teach OpenMP codegen to emit the construct
in Generic mode.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29143
llvm-svn: 293183
The handler that deals with IR passed/missed/analysis remarks is extended to
also handle the corresponding MIR remarks.
The more thorough testing in done via llc (rL293113, rL293121). Here we just
make sure that the functionality is accessible through clang.
llvm-svn: 293146
Instead of using the location of the beginning '-'/'+'.
This is consistent with location used for function decls and ObjC method calls where we use the base name as the location as well.
llvm-svn: 293134
Rather than storing a single flat list of SourceLocations where the diagnostic
state changes (in source order), we now store a separate list for each FileID
in which there is a diagnostic state transition. (State for other files is
built and cached lazily, on demand.) This has two consequences:
1) We can now sensibly support modules, and properly track the diagnostic state
for modular headers (this matters when, for instance, triggering instantiation
of a template defined within a module triggers diagnostics).
2) It's much faster than the old approach, since we can now just do a binary
search on the offsets within the FileID rather than needing to call
isBeforeInTranslationUnit to determine source order (which is surprisingly
slow). For some pathological (but real world) files, this reduces total
compilation time by more than 10%.
For now, the diagnostic state points for modules are loaded eagerly. It seems
feasible to defer this until diagnostic state information for one of the
module's files is needed, but that's not part of this patch.
llvm-svn: 293123
in the current lexical scope.
clang currently emits the lifetime.start marker of a variable when the
variable comes into scope even though a variable's lifetime starts at
the entry of the block with which it is associated, according to the C
standard. This normally doesn't cause any problems, but in the rare case
where a goto jumps backwards past the variable declaration to an earlier
point in the block (see the test case added to lifetime2.c), it can
cause mis-compilation.
To prevent such mis-compiles, this commit conservatively disables
emitting lifetime variables when a label has been seen in the current
block.
This problem was discussed on cfe-dev here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/050066.html
rdar://problem/30153946
Differential Revision: https://reviews.llvm.org/D27680
llvm-svn: 293106
Summary:
Now when you ask clang to link in a bitcode module, you can tell it to
set attributes on that module's functions to match what we would have
set if we'd emitted those functions ourselves.
This is particularly important for fast-math attributes in CUDA
compilations.
Each CUDA compilation links in libdevice, a bitcode library provided by
nvidia as part of the CUDA distribution. Without this patch, if we have
a user-function F that is compiled with -ffast-math that calls a
function G from libdevice, F will have the unsafe-fp-math=true (etc.)
attributes, but G will have no attributes.
Since F calls G, the inliner will merge G's attributes into F's. It
considers the lack of an unsafe-fp-math=true attribute on G to be
tantamount to unsafe-fp-math=false, so it "merges" these by setting
unsafe-fp-math=false on F.
This then continues up the call graph, until every function that
(transitively) calls something in libdevice gets unsafe-fp-math=false
set, thus disabling fastmath in almost all CUDA code.
Reviewers: echristo
Subscribers: hfinkel, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D28538
llvm-svn: 293097
This patch adds support for the proc_bind clause on the Spmd construct
'target parallel' on the NVPTX device. Since the parallel region is created
upon kernel launch, this clause can be safely ignored on the NVPTX device at
codegen time for level 0 parallelism.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29128
llvm-svn: 293069
Use the new llvm_canonicalize_cmake_booleans() function to canonicalize
booleans for lit tests. Replace the duplicate ENABLE_CLANG* variables
used to hold canonicalized values with in-place canonicalization. Use
implicit logic in Python code to avoid overrelying on exact 0/1 values.
Differential Revision: https://reviews.llvm.org/D28529
llvm-svn: 293052
Summary: This enables the test to run on systems where output cannot be written.
Reviewers: compnerd
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D29123
llvm-svn: 293051
Prior to OpenCL 2.0, image3d_t can only be used with the write_only
access qualifier when the cl_khr_3d_image_writes extension is enabled,
see e.g. OpenCL 1.1 s6.8b.
Require the extension for write_only image3d_t types and guard uses of
write_only image3d_t in the OpenCL header.
Patch by Sven van Haastregt!
Review: https://reviews.llvm.org/D28860
llvm-svn: 293050
The thread_limit-clause on the combined directive applies to the
'teams' region of this construct. We modify the ThreadLimitClause
class to capture the clause expression within the 'target' region.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29087
llvm-svn: 293049
The num_teams-clause on the combined directive applies to the
'teams' region of this construct. We modify the NumTeamsClause
class to capture the clause expression within the 'target' region.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29085
llvm-svn: 293048
This is an attempt to avoid new false positives caused by the reverted r292800,
however the scope of the fix is significantly reduced - some variables are still
in incorrect memory spaces.
Relevant test cases added.
rdar://problem/30105546
rdar://problem/30156693
Differential revision: https://reviews.llvm.org/D28946
llvm-svn: 293043
This reverts commit r293004 because it broke the buildbots with "unknown CPU"
errors. I tried to fix it in r293026, but that broke on Green Dragon with this
kind of error:
error: expected string not found in input
// CHECK: l{{ +}}df{{ +}}*ABS*{{ +}}{{0+}}{{.+}}preprocessed-input.c{{$}}
^
<stdin>:2:1: note: scanning from here
/Users/buildslave/jenkins/sharedspace/incremental@2/clang-build/tools/clang/test/Frontend/Output/preprocessed-input.c.tmp.o: file format Mach-O 64-bit x86-64
^
<stdin>:2:67: note: possible intended match here
/Users/buildslave/jenkins/sharedspace/incremental@2/clang-build/tools/clang/test/Frontend/Output/preprocessed-input.c.tmp.o: file format Mach-O 64-bit x86-64
I suppose this means that llvm-objdump doesn't support Mach-O, so the test
should indeed check for linux (but not for x86). I'll leave it to someone that
knows better.
llvm-svn: 293032
This test broke on a lot of non-x86 buildbots with "unknowm CPU" errors. I don't
see anything platform-specific about this test, and it seems to work fine on ARM
if we just remove the -triple i686 flags from the run line.
llvm-svn: 293026
Sometime clang would be supplied -fobjc-arc -f(no)objc-arc-exceptions
and then later disable ARC with -fno-objc-arc, which only negate first
option, but not the latter, resulting usused argument warning. Silence
this warning only when -fno-objc-arc option is present.
Patch by Onha Choe!
llvm-svn: 293014
This patch adds support for codegen of 'target teams' on the host.
This combined directive has two captured statements, one for the
'teams' region, and the other for the 'parallel'.
This target teams region is offloaded using the __tgt_target_teams()
call. The patch sets the number of teams as an argument to
this call.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29084
llvm-svn: 293005
Summary:
Clang appears to always use name as specified on the command
line, whereas gcc uses the name as specified in the linemarker at the
first line when compiling a preprocessed source. This results mismatch
between two compilers in FILE symbol table entry. This patch makes clang
to resemble gcc's behavior in finding the original source file name and
use it as an input file name.
Even with this patch, values of FILE symbol table entry may still be
different because clang uses dirname+basename for the entry whlie gcc
uses basename only. I'll write a patch for that once this patch is
committed.
Reviewers: dblaikie, inglorion
Reviewed By: inglorion
Subscribers: inglorion, aprantl, bruno
Differential Revision: https://reviews.llvm.org/D28796
llvm-svn: 293004
This patch adds support for codegen of 'target teams' on the host.
This combined directive has two captured statements, one for the
'teams' region, and the other for the 'parallel'.
This target teams region is offloaded using the __tgt_target_teams()
call. The patch sets the number of teams as an argument to
this call.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29084
llvm-svn: 293001
This patch adds support for the Spmd construct 'target parallel' on the
NVPTX device. This involves ignoring the num_threads clause on the device
since the number of threads in this combined construct is already set on
the host through the call to __tgt_target_teams().
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29083
llvm-svn: 292999
The num_threads-clause on the combined directive applies to the
'parallel' region of this construct. We modify the NumThreadsClause
class to capture the clause expression within the 'target' region.
The offload runtime call for 'target parallel' is changed to
__tgt_target_teams() with 1 team and the number of threads set by
this clause or a default if none.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29082
llvm-svn: 292997
methods from protocols and categories as well
Code completion results for class methods already include instance methods
from Objective-C root classes. This commit ensures that the results also include
instance methods from protocols that the root class implements and root class
categories as well.
rdar://28012953
Differential Revision: https://reviews.llvm.org/D27257
llvm-svn: 292932
This reverts commit r292800.
It is causing null pointer dereference false positives when a block that
captures a static local is evaluated at the top level.
llvm-svn: 292874
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839