(1) Adds comments for the API.
(2) Removes the setArch method: This is redundant: the setArchStr method on the
triple should be used instead.
(3) Turns EmulatedTLS on by default. This matches EngineBuilder's behavior.
llvm-svn: 343423
Explicitly defines ThreadSafeModule's move-assignment operator to move fields in
reverse order. This is required to ensure that the context field outlives the
module field.
llvm-svn: 343149
destroyed before its ThreadSharedContext.
Destroying the context first is an error if this ThreadSafeModule is the only
owner of its underlying context.
Add a unit test for ThreadSafeModule/ThreadSafeContext to catch this and other
basic usage issues.
llvm-svn: 343129
implementation as lazy compile callbacks, and a "lazy re-exports" utility that
builds lazy call-throughs.
Lazy call-throughs are similar to lazy compile callbacks (and are based on the
same underlying state saving/restoring trampolines) but resolve their targets
by performing a standard ORC lookup rather than invoking a user supplied
compiler callback. This allows them to inherit the thread-safety of ORC lookups
while blocking only the calling thread (whereas compile callbacks also block one
compile thread).
Lazy re-exports provide a simple way of building lazy call-throughs. Unlike a
regular re-export, a lazy re-export generates a new address (a stub entry point)
that will act like the re-exported symbol when called. The first call via a
lazy re-export will trigger compilation of the re-exported symbol before calling
through to it.
llvm-svn: 343061
This will allow trampoline pools to be re-used for a new lazy-reexport utility
that generates looks up function bodies using the standard symbol lookup process
(rather than using a user provided compile function). This new utility provides
the same capabilities (since MaterializationUnits already allow user supplied
compile functions to be run) as JITCompileCallbackManager, but can use the new
asynchronous lookup functions to avoid blocking a compile thread.
This patch also updates createLocalCompileCallbackManager to return an error if
a callback manager can not be created, and updates clients of that API to
account for the change. Finally, the OrcCBindingsStack is updates so that if
a callback manager is not available for the target platform a valid stack
(without support for lazy compilation) can still be constructed.
llvm-svn: 343059
compilation of IR in the JIT.
ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to
lock that context when it needs to be accessed from multiple threads.
ThreadSafeModule is a pair of a unique_ptr<Module> and a
shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext
to be managed automatically in terms of the ThreadSafeModules that refer to it:
Once all modules using a ThreadSafeContext are destructed, and providing the
client has not held on to a copy of shared context pointer, the context will be
automatically destructed.
This scheme is necessary due to the following constraits: (1) We need multiple
contexts for multithreaded compilation (at least one per compile thread plus
one to store any IR not currently being compiled, though one context per module
is simpler). (2) We need to free contexts that are no longer being used so that
the JIT does not leak memory over time. (3) Module lifetimes are not
predictable (modules are compiled as needed depending on the flow of JIT'd
code) so there is no single point where contexts could be reclaimed.
JIT clients not using concurrency can safely use one ThreadSafeContext for all
ThreadSafeModules.
JIT clients who want to be able to compile concurrently should use a different
ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their
top-level IRLayer. The former reduces compile latency (since no clone step is
needed) at the cost of additional memory overhead for uncompiled modules (as
every uncompiled module will duplicate the LLVM types, constants and metadata
that have been shared).
llvm-svn: 343055
construction, a new convenience lookup method, and add-to layer methods.
ExecutionSession now creates a special 'main' JITDylib upon construction. All
subsequently created JITDylibs are added to the main JITDylib's search order by
default (controlled by the AddToMainDylibSearchOrder parameter to
ExecutionSession::createDylib). The main JITDylib's search order will be used in
the future to properly handle cross-JITDylib weak symbols, with the first
definition in this search order selected.
This commit also adds a new ExecutionSession::lookup convenience method that
performs a blocking lookup using the main JITDylib's search order, as this will
be a very common operation for clients.
Finally, new convenience overloads of IRLayer and ObjectLayer's add methods are
introduced that add the given program representations to the main dylib, which
is likely to be the common case.
llvm-svn: 342086
The existing memory manager API can not be shared between objects when linking
concurrently (since there is no way to know which concurrent allocations were
performed on behalf of which object, and hence which allocations would be safe
to finalize when finalizeMemory is called). For now, we can work around this by
requiring a new memory manager for each object.
This change only affects the concurrent version of the ORC APIs.
llvm-svn: 341579
Removes the implicit conversion to the underlying type for
JITSymbolFlags::FlagNames and replaces it with some bitwise and comparison
operators.
llvm-svn: 341282
management and materialization responsibility registration.
The setOverrideObjectFlagsWithResponsibilityFlags method instructs
RTDyldObjectlinkingLayer2 to override the symbol flags produced by RuntimeDyld with
the flags provided by the MaterializationResponsibility instance. This can be used
to enable symbol visibility (hidden/exported) for COFF object files, which do not
currently support the SF_Exported flag.
The setAutoClaimResponsibilityForObjectSymbols method instructs
RTDyldObjectLinkingLayer2 to claim responsibility for any symbols provided by a
given object file that were not already in the MaterializationResponsibility
instance. Setting this flag allows higher-level program representations (e.g.
LLVM IR) to be added based on only a subset of the symbols they provide, without
having to write intervening layers to scan and add the additional symbols. This
trades diagnostic quality for convenience however: If all symbols are enumerated
up-front then clashes can be detected and reported early. If this option is set,
clashes for the additional symbols may not be detected until late, and detection
may depend on the flow of control through JIT'd code.
llvm-svn: 341154
The new method name/behavior more closely models the way it was being used.
It also fixes an assertion that can occur when using the new ORC Core APIs,
where flags alone don't necessarily provide enough context to decide whether
the caller is responsible for materializing a given symbol (which was always
the reason this API existed).
The default implementation of getResponsibilitySet uses lookupFlags to determine
responsibility as before, so existing JITSymbolResolvers should continue to
work.
llvm-svn: 340874
An emitted symbol has had its contents written and its memory protections
applied, but it is not automatically ready to execute.
Prior to ORC supporting concurrent compilation, the term "finalized" could be
interpreted two different (but effectively equivalent) ways: (1) The finalized
symbol's contents have been written and its memory protections applied, and (2)
the symbol is ready to run. Now that ORC supports concurrent compilation, sense
(1) no longer implies sense (2). We have already introduced a new term, 'ready',
to capture sense (2), so rename sense (1) to 'emitted' to avoid any lingering
confusion.
llvm-svn: 340115
VSO was a little close to VDSO (an acronym on Linux for Virtual Dynamic Shared
Object) for comfort. It also risks giving the impression that instances of this
class could be shared between ExecutionSessions, which they can not.
JITDylib seems moderately less confusing, while still hinting at how this
class is intended to be used, i.e. as a JIT-compiled stand-in for a dynamic
library (code that would have been a dynamic library if you had wanted to
compile it ahead of time).
llvm-svn: 340084
An instance of ReexportsFallbackDefinitionGenerator can be attached to a VSO
(via setFallbackDefinitionGenerator) to re-export symbols on demandy from a
backing VSO.
llvm-svn: 338764
Also, make SerializationTraits for pairs forward the actual pair
template type arguments to the underlying serializer. This allows, for example,
std::pair<StringRef, bool> to be passed as an argument to an RPC call expecting
a std::pair<std::string, bool>, since there is an underlying serializer from
StringRef to std::string that can be used.
llvm-svn: 338305
deprecating SymbolResolver and AsynchronousSymbolQuery.
Both lookup overloads take a VSO search order to perform the lookup. The first
overload is non-blocking and takes OnResolved and OnReady callbacks. The second
is blocking, takes a boolean flag to indicate whether to wait until all symbols
are ready, and returns a SymbolMap. Both overloads take a RegisterDependencies
function to register symbol dependencies (if any) on the query.
llvm-svn: 337595
This discards the unresolved symbols set and returns the flags map directly
(rather than mutating it via the first argument).
The unresolved symbols result made it easy to chain lookupFlags calls, but such
chaining should be rare to non-existant (especially now that symbol resolvers
are being deprecated) so the simpler method signature is preferable.
llvm-svn: 337594
A search order is a list of VSOs to be searched linearly to find symbols. Each
VSO now has a search order that will be used when fixing up definitions in that
VSO. Each VSO's search order defaults to just that VSO itself.
This is a first step towards removing symbol resolvers from ORC altogether. In
practice symbol resolvers tended to be used to implement a search order anyway,
sometimes with additional programatic generation of symbols. Now that VSOs
support programmatic generation of definitions via fallback generators, search
orders provide a cleaner way to achieve the desired effect (while removing a lot
of boilerplate).
llvm-svn: 337593
delegate method (and unit test).
The name 'replace' better captures what the old delegate method did: it
returned materialization responsibility for a set of symbols to the VSO.
The new delegate method delegates responsibility for a set of symbols to a new
MaterializationResponsibility instance. This can be used to split responsibility
between multiple threads, or multiple materialization methods.
llvm-svn: 336603
Once a symbol has been selected for materialization it can no longer be
overridden. Stripping the weak flag guarantees this (override attempts will
then be treated as duplicate definitions and result in a DuplicateDefinition
error).
llvm-svn: 334771
If a VSO has a fallback definition generator attached it will be called during
lookup (and lookupFlags) for any unresolved symbols. The definition generator
can add new definitions to the VSO for any unresolved symbol. This allows VSOs
to generate new definitions on demand.
The immediate use case for this code is supporting VSOs that can import
definitions found via dlsym on demand.
llvm-svn: 334538
Existing implementations of these methods do not require lazy materialization,
and switching to JITEvaluatedSymbol allows us to remove error checking on the
client side.
llvm-svn: 333835
This method returns the set of symbols in the target VSO that have queries
waiting on them. This can be used to make decisions about which symbols to
delegate to another MaterializationUnit (typically this will involve
delegating all symbols that have *not* been requested to another
MaterializationUnit so that materialization of those symbols can be
deferred until they are requested).
llvm-svn: 333684
Previously JITCompileCallbackManager only supported single threaded code. This
patch embeds a VSO (see include/llvm/ExecutionEngine/Orc/Core.h) in the callback
manager. The VSO ensures that the compile callback is only executed once and that
the resulting address cached for use by subsequent re-entries.
llvm-svn: 333490
Re-appply r333147, reverted in r333152 due to a pre-existing bug. As
D47308 has been merged in r333206, the OSX issue should now be
resolved.
In many cases JIT users will know in which module a symbol
resides. Avoiding to search other modules can be more efficient. It
also allows to handle duplicate symbol names between modules.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D44889
llvm-svn: 333215
This reverts r333147 until https://reviews.llvm.org/D47308 is ready to
be reviewed. r333147 exposed a behavioural difference between
OrcCBindingsStack::findSymbolIn() and OrcCBindingsStack::findSymbol(),
where only the latter does name mangling. After r333147 that causes a
test failure on OSX, because the new test looks for main using
findSymbolIn() but the mangled name is _main.
llvm-svn: 333152
In many cases JIT users will know in which module a symbol
resides. Avoiding to search other modules can be more efficient. It
also allows to handle duplicate symbol names between modules.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D44889
llvm-svn: 333147
The lookup function provides blocking symbol resolution for JIT clients (not
layers themselves) so it does not need to track symbol dependencies via a
MaterializationResponsibility.
llvm-svn: 332897
notifyFailed method rather than passing in an error generator.
VSO::notifyFailed is responsible for notifying queries that they will not
succeed due to error. In practice the queries don't care about the details
of the failure, just the fact that a failure occurred for some symbols.
Having VSO::notifyFailed take care of this simplifies the interface.
llvm-svn: 332666
VSOs now track dependencies for materializing symbols. Each symbol must have its
dependencies registered with the VSO prior to finalization. Usually this will
involve registering the dependencies returned in
AsynchronousSymbolQuery::ResolutionResults for queries made while linking the
symbols being materialized.
Queries against symbols are notified that a symbol is ready once it and all of
its transitive dependencies are finalized, allowing compilation work to be
broken up and moved between threads without queries returning until their
symbols fully safe to access / execute.
Related utilities (VSO, MaterializationUnit, MaterializationResponsibility) are
updated to support dependence tracking and more explicitly track responsibility
for symbols from the point of definition until they are finalized.
llvm-svn: 332541
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
LLVM_ON_WIN32 is set exactly with MSVC and MinGW (but not Cygwin) in
HandleLLVMOptions.cmake, which is where _WIN32 defined too. Just use the
default macro instead of a reinvented one.
See thread "Replacing LLVM_ON_WIN32 with just _WIN32" on llvm-dev and cfe-dev.
No intended behavior change.
This moves over all uses of the macro, but doesn't remove the definition
of it in (llvm-)config.h yet.
llvm-svn: 331127
/usr/local/bin/ld.lld: error: undefined symbol: llvm::createAggressiveInstCombinerPass()
>>> referenced by cc1_main.cpp
>>> tools/clang/tools/driver/CMakeFiles/clang.dir/cc1_main.cpp.o:(_GLOBAL__sub_I_cc1_main.cpp)
And so on
The bot coverage is clearly missing.
llvm-svn: 330693
materializing function definitions.
MaterializationUnit instances are responsible for resolving and finalizing
symbol definitions when their materialize method is called. By contract, the
MaterializationUnit must materialize all definitions it is responsible for and
no others. If it can not materialize all definitions (because of some error)
then it must notify the associated VSO about each definition that could not be
materialized. The MaterializationResponsibility class tracks this
responsibility, asserting that all required symbols are resolved and finalized,
and that no extraneous symbols are resolved or finalized. In the event of an
error it provides a convenience method for notifying the VSO about each
definition that could not be materialized.
llvm-svn: 330142
notifyMaterializationFailed.
The notifyMaterializationFailed method can determine which error to raise by
looking at which queue the pending queries are in (resolution or finalization).
llvm-svn: 330141
Previously this crashed because a nullptr (returned by
createLocalIndirectStubsManagerBuilder() on platforms without
indirection support) functor was unconditionally invoked.
Patch by Andres Freund. Thanks Andres!
llvm-svn: 328687
There's are race between this thread and the destructor of the test ORC
components on the main threads. I saw flaky failures there in about 4%
of the runs of this unit test.
llvm-svn: 328300
operation all-or-nothing, rather than allowing materialization on a per-symbol
basis.
This addresses a shortcoming of per-symbol materialization: If a
MaterializationUnit (/SymbolSource) wants to materialize more symbols than
requested (which is likely: most materializers will want to materialize whole
modules) then it needs a way to notify the symbol table about the extra symbols
being materialized. This process (checking what has been requested against what
is being provided and notifying the symbol table about the difference) has to
be repeated at every level of the JIT stack. Making materialization
all-or-nothing eliminates this issue, simplifying both materializer
implementations and the symbol table (VSO class) API. The cost is that
per-symbol materialization (e.g. for individual symbols in a module) now
requires multiple MaterializationUnits.
llvm-svn: 327946
This reverts commit r327566, it breaks
test/ExecutionEngine/OrcMCJIT/test-global-ctors.ll.
The test doesn't crash with a stack trace, unfortunately. It merely
returns 1 as the exit code.
ASan didn't produce a report, and I reproduced this on my Linux machine
and Windows box.
llvm-svn: 327576
Layer implementations typically mutate module state, and this is better
reflected by having layers own the Module they are operating on.
llvm-svn: 327566
The lookup function takes a list of VSOs, a set of symbol names (or just one
symbol name) and a materialization function object. It returns an
Expected<SymbolMap> (if given a set of names) or an Expected<JITEvaluatedSymbol>
(if given just one name). The lookup method constructs an
AsynchronousSymbolQuery for the given names, applies that query to each VSO in
the list in turn, and then blocks waiting for the query to complete. If
threading is enabled then the materialization function object can be used to
execute the materialization on different threads. If threading is disabled the
MaterializeOnCurrentThread utility must be used.
llvm-svn: 327474
than a shared ObjectFile/MemoryBuffer pair.
There's no need to pre-parse the buffer into an ObjectFile before passing it
down to the linking layer, and moving the parsing into the linking layer allows
us remove the parsing code at each call site.
llvm-svn: 325725
Handles were returned by addModule and used as keys for removeModule,
findSymbolIn, and emitAndFinalize. Their job is now subsumed by VModuleKeys,
which simplify resource management by providing a consistent handle across all
layers.
llvm-svn: 324700
In particular this patch switches RTDyldObjectLinkingLayer to use
orc::SymbolResolver and threads the requried changse (ExecutionSession
references and VModuleKeys) through the existing layer APIs.
The purpose of the new resolver interface is to improve query performance and
better support parallelism, both in JIT'd code and within the compiler itself.
The most visibile change is switch of the <Layer>::addModule signatures from:
Expected<Handle> addModule(std::shared_ptr<ModuleType> Mod,
std::shared_ptr<JITSymbolResolver> Resolver)
to:
Expected<Handle> addModule(VModuleKey K, std::shared_ptr<ModuleType> Mod);
Typical usage of addModule will now look like:
auto K = ES.allocateVModuleKey();
Resolvers[K] = createSymbolResolver(...);
Layer.addModule(K, std::move(Mod));
See the BuildingAJIT tutorial code for example usage.
llvm-svn: 324405
This resolver conforms to the LegacyJITSymbolResolver interface, and will be
replaced with a null-returning resolver conforming to the newer
orc::SymbolResolver interface in the near future. This patch renames the class
to avoid a clash.
llvm-svn: 324175
first argument.
This makes lookupFlags more consistent with lookup (which takes the query as the
first argument) and composes better in practice, since lookups are usually
linearly chained: Each lookupFlags can populate the result map based on the
symbols not found in the previous lookup. (If the maps were returned rather than
passed by reference there would have to be a merge step at the end).
llvm-svn: 323398
functions/methods that return JITSymbols.
lookupFlagsWithLegacyFn takes a SymbolNameSet and a legacy lookup function and
returns a LookupFlagsResult. It uses the legacy lookup function to search for
each symbol. If found, getFlags is called on the symbol and the flags added to
the SymbolFlags map. If not found, the symbol is added to the SymbolsNotFound
set.
lookupWithLegacyFn takes an AsynchronousSymbolQuery, a SymbolNameSet and a
legacy lookup function. Each symbol in the SymbolNameSet is searched for via the
legacy lookup function. If it is found, its getAddress function is called
(triggering materialization if it has not happened already) and the resulting
mapping stored in the query. If it is not found the symbol is added to the
unresolved symbols set which is returned at the end of the function. If an
error occurs during legacy lookup or materialization it is passed to the
query via setFailed and the function returns immediately.
llvm-svn: 323388
This patch adds a LambdaSymbolResolver convenience utility that can create an
orc::SymbolResolver from a pair of function objects that supply the behavior for
the lookupFlags and lookup methods.
This class plays the same role for orc::SymbolResolver as the legacy
LambdaResolver class plays for LegacyJITSymbolResolver, and will replace the
latter class once all ORC APIs are migrated to orc::SymbolResolver.
This patch also adds some documentation for the orc::SymbolResolver class as
this was left out of the original commit.
llvm-svn: 323375
orc::SymbolResolver to JITSymbolResolver adapter.
The new orc::SymbolResolver interface uses asynchronous queries for better
performance. (Asynchronous queries with bulk lookup minimize RPC/IPC overhead,
support parallel incoming queries, and expose more available work for
distribution). Existing ORC layers will soon be updated to use the
orc::SymbolResolver API rather than the legacy llvm::JITSymbolResolver API.
Because RuntimeDyld still uses JITSymbolResolver, this patch also includes an
adapter that wraps an orc::SymbolResolver with a JITSymbolResolver API.
llvm-svn: 323073
lookupFlags returns a SymbolFlagsMap for the requested symbols, along with a
set containing the SymbolStringPtr for any symbol not found in the VSO.
The JITSymbolFlags for each symbol will have been stripped of its transient
JIT-state flags (i.e. NotMaterialized, Materializing).
Calling lookupFlags does not trigger symbol materialization.
llvm-svn: 323060
version being used on some of the green dragon builders (plus a clang-format).
Workaround: AsynchronousSymbolQuery and VSO want to work with
JITEvaluatedSymbols anyway, so just use them (instead of JITSymbol, which
happens to tickle the bug).
The libcxx bug being worked around was fixed in r276003, and there are plans to
update the offending builders.
llvm-svn: 322140
The original commit broke the builders due to a think-o in an assertion:
AsynchronousSymbolQuery's constructor needs to check the callback member
variables, not the constructor arguments.
llvm-svn: 321853
SymbolSource.
These new APIs are a first stab at tackling some current shortcomings of ORC,
especially in performance and threading support.
VSO (Virtual Shared Object) is a symbol table representing the symbol
definitions of a set of modules that behave as if they had been statically
linked together into a shared object or dylib. Symbol definitions, either
pre-defined addresses or lazy definitions, can be added and queries for symbol
addresses made. The table applies the same linkage strength rules that static
linkers do when constructing a dylib or shared object: duplicate definitions
result in errors, strong definitions override weak or common ones. This class
should improve symbol lookup speed by providing centralized symbol tables (as
compared to the findSymbol implementation in the in-tree ORC layers, which
maintain one symbol table per object file / module added).
AsynchronousSymbolQuery is a query for the addresses of a set of symbols.
Query results are returned via a callback once they become available. Querying
for a set of symbols, rather than one symbol at a time (as the current lookup
scheme does) the JIT has the opportunity to make better use of available
resources (e.g. by spawning multiple jobs to materialize the requested symbols
if possible). Returning results via a callback makes queries asynchronous, so
queries from multiple threads of JIT'd code can proceed simultaneously.
SymbolSource represents a source of symbol definitions. It is used when
adding lazy symbol definitions to a VSO. Symbol definitions can be materialized
when needed or discarded if a stronger definition is found. Materializing on
demand via SymbolSources should (eventually) allow us to remove the lazy
materializers from JITSymbol, which will in turn allow the removal of many
current error checks and reduce the number of RPC round-trips involved in
materializing remote symbols. Adding a discard function allows sources to
discard symbol definitions (or mark them as available_externally), reducing the
amount of redundant code generated by the JIT for ODR symbols.
llvm-svn: 321838
rL319838 introduced SymbolStringPool which uses 8 byte atomics for
reference counters. On systems which do not support such atomics
natively such as MIPS32, explicitly add libatomic as one of the
libraries for SymbolStringPool's unittest.
Reviewers: lhames, beanz
Differential Revision: https://reviews.llvm.org/D41010
llvm-svn: 321225
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
comparison of symbol names.
SymbolStringPool is a thread-safe string pool that will be used in upcoming Orc
APIs to facilitate efficient storage and fast comparison of symbol name strings.
llvm-svn: 319839
/code/llvm-project/llvm/unittests/ExecutionEngine/Orc/RTDyldObjectLinkingLayerTest.cpp:260:38: error: lambda capture 'this' is not used [-Werror,-Wunused-lambda-capture]
[this](decltype(ObjLayer)::ObjHandleT,
llvm-svn: 314454