reparses an already-parsed translation unit. At the moment it's just a
convenience function, but we hope to use it for performance
optimizations.
llvm-svn: 108756
taking it in pieces.
- Fixes a problem where the Clang executable path was not initialized properly
on Win32, because sys::Path::getBasename() doesn't do what I always think it
does. Imagine that, a sys::Path interface that is confusing!
llvm-svn: 108667
to use them instead of SourceRange. CharSourceRange is just a SourceRange
plus a bool that indicates whether the range has the end character resolved
or whether the end location is the start of the end token. While most of
the compiler wants to think of ranges that have ends that are the start of
the end token, the printf diagnostic stuff wants to highlight ranges within
tokens.
This is transparent to the diagnostic stuff. To start taking advantage of
the new capabilities, you can do something like this:
Diag(..) << CharSourceRange::getCharRange(Begin,End)
llvm-svn: 106338
Currently, there are two effective changes:
- Attr::Kind has been changed to attr::Kind, in a separate namespace
rather than the Attr class. This is because the enumerator needs to
be visible to parse.
- The class definitions for the C++0x attributes other than aligned are
generated by TableGen.
The specific classes generated by TableGen are controlled by an array in
TableGen (see the accompanying commit to the LLVM repository). I will be
expanding the amount of code generated as I develop the new attributes system
while initially keeping it confined to these attributes.
llvm-svn: 106172
Currently, all AST consumers are located in the Frontend library,
meaning that in a shared library configuration, Frontend has a
dependency on Rewrite, Checker and CodeGen. This is suboptimal for
clients which only wish to make use of the frontend. CodeGen in
particular introduces a large number of unwanted dependencies.
This patch breaks the dependency by moving all AST consumers with
dependencies on Rewrite, Checker and/or CodeGen to their respective
libraries. The patch therefore introduces dependencies in the other
direction (i.e. from Rewrite, Checker and CodeGen to Frontend).
After applying this patch, Clang builds correctly using CMake and
shared libraries ("cmake -DBUILD_SHARED_LIBS=ON").
N.B. This patch includes file renames which are indicated in the
patch body.
Changes in this revision of the patch:
- Fixed some copy-paste mistakes in the header files
- Modified certain aspects of the coding to comply with the LLVM
Coding Standards
llvm-svn: 106010
- This magically enables using 'clang -cc1' as a replacement for most of 'llvm-as', 'llvm-dis', 'llc' and 'opt' functionality.
For example, 'llvm-as' is:
$ clang -cc1 -emit-llvm-bc FOO.ll -o FOO.bc
and 'llvm-dis' is:
$ clang -cc1 -emit-llvm FOO.bc -o -
and 'opt' is, e.g.:
$ clang -cc1 -emit-llvm -O3 -o FOO.opt.ll FOO.ll
and 'llc' is, e.g.:
$ clang -cc1 -S -o - FOO.ll
The nice thing about using the backend tools this way is that they are guaranteed to exactly match how the compiler generates code (for example, setting the same backend options).
llvm-svn: 105583