output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
Undef subreg definition means that the content of the super register
doesn't matter at this point. While that's true for virtual registers,
this may not hold when replacing them with actual physical registers.
Indeed, some part of the physical register may be coalesced with the
related virtual register and thus, the values for those parts matter and
must be live.
The fix consists in checking whether or not subregs of the physical register
being assigned to an undef subreg definition are live through that def and
insert an implicit use if they are. Doing so, will keep them alive until
that point like they should be.
E.g., let vreg14 being assigned to R0_R1 then
%vreg14:gsub_0<def,read-undef> = COPY %R0 ; <-- R1 is still live here
%vreg14:gsub_1<def> = COPY %R1
Before this changes, the rewriter would change the code into:
%R0<def> = KILL %R0, %R0_R1<imp-def> ; <-- this tells R1 is redefined
%R1<def> = KILL %R1, %R0_R1<imp-def>, %R0_R1<imp-use> ; this value of this R1
; is believed to come
; from the previous
; instruction
Because of this invalid liveness, later pass could make wrong choices and in
particular clobber live register as it happened with the register scavenger in
llvm.org/PR34107
Now we would generate:
%R0<def> = KILL %R0, %R0_R1<imp-def>, %R0_R1<imp-use> ; This tells R1 needs to
; reach this point
%R1<def> = KILL %R1, %R0_R1<imp-def>, %R0_R1<imp-use>
The bug has been here forever, it got exposed recently because the register
scavenger got smarter.
Fixes llvm.org/PR34107
llvm-svn: 310979