This was completely broken, but hopefully fixed by this patch.
In cases where it is needed, a vector with non byte-sized elements is stored
by extracting, zero-extending, shift:ing and or:ing the elements into an
integer of the same width as the vector, which is then stored.
Review: Eli Friedman, Ulrich Weigand
https://reviews.llvm.org/D42100#inline-369520https://bugs.llvm.org/show_bug.cgi?id=35520
llvm-svn: 323042
Pass MD5 checksums through from IR to assembly/object files.
After this, getting Clang to compute the MD5 should be the last step
to supporting MD5 in the DWARF v5 line table header.
Differential Revision: https://reviews.llvm.org/D41926
llvm-svn: 322391
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
This patch peels off the top case in switch statement into a branch if the
probability exceeds a threshold. This will help the branch prediction and
avoids the extra compares when lowering into chain of branches.
Differential Revision: http://reviews.llvm.org/D39262
llvm-svn: 318202
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
undefined reference to `llvm::TargetPassConfig::ID' on
clang-ppc64le-linux-multistage
This reverts commit eea333c33fa73ad225ef28607795984829f65688.
llvm-svn: 317213
Summary:
This is mostly a noop (most of the test diffs are renamed blocks).
There are a few temporary register renames (eax<->ecx) and a few blocks are
shuffled around.
See the discussion in PR33325 for more details.
Reviewers: spatel
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D39456
llvm-svn: 317211
Summary: Make test robust enough to not fail due to CFG changes and re-enable for ARM/AArch64.
Reviewers: rovka, fhahn
Reviewed By: fhahn
Subscribers: fhahn, aemerson, rengolin, mcrosier, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D38590
llvm-svn: 315002
r314857 changed the CFG that resulted in the flaky test MachineBranchProb.ll to
fail the bots again. Marking it as unsupported for ARM/AArch64 again until we
find the cause.
llvm-svn: 314912
If getHexUint reads in a hex 0, it will create an APInt with a value of 0.
The number of active bits on this APInt is used to calculate the bitwidth of
Result. The number of active bits is defined as an APInt's bitwidth - its
number of leading 0s. Since this APInt is 0, its bitwidth and number of leading
0s are equal.
Thus, Result is constructed with a bitwidth of 0, triggering an APInt assert.
This commit fixes that by checking if the APInt is equal to 0, and setting the
bitwidth to 32 if it is. Otherwise, it sets the bitwidth using getActiveBits.
This caused issues when compiling MIR files with successor probabilities. In
the case that a successor is tagged with a probability of 0, this assert would
fire on debug builds.
https://reviews.llvm.org/D37401
llvm-svn: 312387
This patch refactors the code used in llc such that all the users of the
addPassesToEmitFile API have access to a homogeneous way of handling
start/stop-after/before options right out of the box.
In particular, just invoking addPassesToEmitFile will set the proper
pipeline without additional effort (modulo parsing a .mir file if the
start-before/after options are used.
NFC.
Differential Revision: https://reviews.llvm.org/D30913
llvm-svn: 309599
This change fixes a bug in SelectionDAGBuilder::visitInsertValue and SelectionDAGBuilder::visitExtractValue where constant expressions (InsertValueConstantExpr and ExtractValueConstantExpr) would be treated as non-constant instructions (InsertValueInst and ExtractValueInst). This bug resulted in an incorrect memory access, which manifested as an assertion failure in SDValue::SDValue.
Fixes PR#33094.
Submitted on behalf of @Praetonus (Benoit Vey)
Differential Revision: https://reviews.llvm.org/D34538
llvm-svn: 307502
Move from generic to X86 directory since gc intrinsics only supposed in
X86 64 bit.
Add target triple as well.
Fixes build failure in i686-linux-RA caused by rL307084.
llvm-svn: 307086
Summary:
We are crashing in LLC at O0 when gc intrinsics are present in the block.
The reason being FastISel performs basic block ISel by modifying GC.relocates
to be the first instruction in the block. This can cause us to visit the GC
relocate before it's corresponding GC.statepoint is visited, which is incorrect.
When we lower the statepoint, we record the base and derived pointers, along
with the gc.relocates. After this we can visit the gc.relocate.
This patch avoids fastISel from incorrectly creating the block with gc.relocate
as the first instruction.
Reviewers: qcolombet, skatkov, qikon, reames
Reviewed by: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34421
llvm-svn: 307084
The isBarrier/isTerminator flags have been removed from the SystemZ trap
instructions, so that tests do not fail with EXPENSIVE_CHECKS. This was just
an issue at -O0 and did not affect code output on benchmarks.
(Like Eli pointed out: "targets are split over whether they consider their
"trap" a terminator; x86, AArch64, and NVPTX don't, but ARM, MIPS, PPC, and
SystemZ do. We should probably try to be consistent here.". This is still the
case, although SystemZ has switched sides).
SystemZ now returns true in isMachineVerifierClean() :-)
These Generic tests have been modified so that they can be run with or without
EXPENSIVE_CHECKS: CodeGen/Generic/llc-start-stop.ll and
CodeGen/Generic/print-machineinstrs.ll
Review: Ulrich Weigand, Simon Pilgrim, Eli Friedman
https://bugs.llvm.org/show_bug.cgi?id=33047https://reviews.llvm.org/D34143
llvm-svn: 306106
- Move ISel (and pre-isel) pass construction into TargetPassConfig
- Extract AsmPrinter construction into a helper function
Putting the ISel code into TargetPassConfig seems a lot more natural and
both changes together make make it easier to build custom pipelines
involving .mir in an upcoming commit. This moves MachineModuleInfo to an
earlier place in the pass pipeline which shouldn't have any effect.
llvm-svn: 304754
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.
Differential Revision: https://reviews.llvm.org/D32245
llvm-svn: 302631
Commit r298799 changed code that made the XFAIL on MachineBranchProb.ll
irrelevant, but some configurations still failed. I can't reproduce it
locally, so I'm hoping that enabling this will tell me if some
configurations will really fail or if they were just too slow.
llvm-svn: 299558
This patch refactors the code used in llc such that all the users of the
addPassesToEmitFile API have access to a homogeneous way of handling
start/stop-after/before options right out of the box.
Previously each user would have needed to duplicate this logic and set
up its own options.
NFC
llvm-svn: 299282
We make the assumption in most of our constant folding code that a fp2int will target an integer of 128-bits or less, calling the APFloat::convertToInteger with only uint64_t[2] of raw bits for the result.
Fuzz testing (PR24662) showed that we don't handle other cases at all, resulting in stack overflows and all sorts of crashes.
This patch uses the APSInt version of APFloat::convertToInteger instead to better handle such cases.
Differential Revision: https://reviews.llvm.org/D31074
llvm-svn: 298226
If dominator tree is not calculated or is invalidated, set corresponding
pointer in the pass state to nullptr. Such pointer value will indicate
that operations with dominator tree are not allowed. In particular, it
allows to skip verification for such pass state. The dominator tree is
not calculated if the machine dominator pass was skipped, it occures in
the case of entities with linkage available_externally.
The change fixes some test fails observed when expensive checks
are enabled.
Differential Revision: https://reviews.llvm.org/D29280
llvm-svn: 296742
Fixes PR 31921
Summary:
Predicateinfo requires an ugly workaround to try to avoid literal
struct types due to the intrinsic mangling not being implemented.
This workaround actually does not work in all cases (you can hit the
assert by bootstrapping with -print-predicateinfo), and can't be made
to work without DFS'ing the type (IE copying getMangledStr and using a
version that detects if it would crash).
Rather than do that, i just implemented the mangling. It seems
simple, since they are unified structurally.
Looking at the overloaded-mangling testcase we have, it actually turns
out the gc intrinsics will *also* crash if you try to use a literal
struct. Thus, the testcase added fails before this patch, and works
after, without needing to resort to predicateinfo.
Reviewers: chandlerc, davide
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D29925
llvm-svn: 295253
There are about 3 underlying bugs causing the tests to fail.
On top of that, some tests just we're 'generic' enough. i.e. 32-bit
registers.
llvm-svn: 294434
If dominator tree has no roots, the pass that calculates it is
likely to be skipped. It occures, for instance, in the case of
entities with linkage available_externally. Do not run tree
verification in such case.
Differential Revision: https://reviews.llvm.org/D28767
llvm-svn: 293033
Running tests with expensive checks enabled exhibits some problems with
verification of pass results.
First, the pass verification may require results of analysis that are not
available. For instance, verification of loop info requires results of dominator
tree analysis. A pass may be marked as conserving loop info but does not need to
be dependent on DominatorTreePass. When a pass manager tries to verify that loop
info is valid, it needs dominator tree, but corresponding analysis may be
already destroyed as no user of it remained.
Another case is a pass that is skipped. For instance, entities with linkage
available_externally do not need code generation and such passes are skipped for
them. In this case result verification must also be skipped.
To solve these problems this change introduces a special flag to the Pass
structure to mark passes that have valid results. If this flag is reset,
verifications dependent on the pass result are skipped.
Differential Revision: https://reviews.llvm.org/D27190
llvm-svn: 291882