* Add support for uniquing strings in the remark streamer and emitting the string table in the remarks section.
* Add parsing support for the string table in the RemarkParser.
From this remark:
```
--- !Missed
Pass: inline
Name: NoDefinition
DebugLoc: { File: 'test-suite/SingleSource/UnitTests/2002-04-17-PrintfChar.c',
Line: 7, Column: 3 }
Function: printArgsNoRet
Args:
- Callee: printf
- String: ' will not be inlined into '
- Caller: printArgsNoRet
DebugLoc: { File: 'test-suite/SingleSource/UnitTests/2002-04-17-PrintfChar.c',
Line: 6, Column: 0 }
- String: ' because its definition is unavailable'
...
```
to:
```
--- !Missed
Pass: 0
Name: 1
DebugLoc: { File: 3, Line: 7, Column: 3 }
Function: 2
Args:
- Callee: 4
- String: 5
- Caller: 2
DebugLoc: { File: 3, Line: 6, Column: 0 }
- String: 6
...
```
And the string table in the .remarks/__remarks section containing:
```
inline\0NoDefinition\0printArgsNoRet\0
test-suite/SingleSource/UnitTests/2002-04-17-PrintfChar.c\0printf\0
will not be inlined into \0 because its definition is unavailable\0
```
This is mostly supposed to be used for testing purposes, but it gives us
a 2x reduction in the remark size, and is an incremental change for the
updates to the remarks file format.
Differential Revision: https://reviews.llvm.org/D60227
llvm-svn: 359050
The simple case of:
```
int *callee();
void *caller(void *a) {
if (a == NULL)
return callee();
return a;
}
```
would generate a regular call instead of a tail call because we don't
look through the bitcast of the call to `callee` when duplicating the
return blocks.
Differential Revision: https://reviews.llvm.org/D60837
llvm-svn: 359041
In preparation of https://reviews.llvm.org/D60837, add this test where
we don't perform a tail call because we don't look through a bitcast.
llvm-svn: 359040
Circling back to a leftover bit from PR39859:
https://bugs.llvm.org/show_bug.cgi?id=39859#c1
...we have this counter-intuitive (based on the test diffs) opportunity to use 'psubus'.
This appears to be the better perf option for both Haswell and Jaguar based on llvm-mca.
We already do this transform for the SETULT predicate, so this makes the code more
symmetrical too. If we have pminub/pminuw, we prefer those, so this should not affect
anything but pre-SSE4.1 subtargets.
$ cat before.s
movdqa -16(%rip), %xmm2 ## xmm2 = [32768,32768,32768,32768,32768,32768,32768,32768]
pxor %xmm0, %xmm2
pcmpgtw -32(%rip), %xmm2 ## xmm2 = [255,255,255,255,255,255,255,255]
pand %xmm2, %xmm0
pandn %xmm1, %xmm2
por %xmm2, %xmm0
$ cat after.s
movdqa -16(%rip), %xmm2 ## xmm2 = [256,256,256,256,256,256,256,256]
psubusw %xmm0, %xmm2
pxor %xmm3, %xmm3
pcmpeqw %xmm2, %xmm3
pand %xmm3, %xmm0
pandn %xmm1, %xmm3
por %xmm3, %xmm0
$ llvm-mca before.s -mcpu=haswell
Iterations: 100
Instructions: 600
Total Cycles: 909
Total uOps: 700
Dispatch Width: 4
uOps Per Cycle: 0.77
IPC: 0.66
Block RThroughput: 1.8
$ llvm-mca after.s -mcpu=haswell
Iterations: 100
Instructions: 700
Total Cycles: 409
Total uOps: 700
Dispatch Width: 4
uOps Per Cycle: 1.71
IPC: 1.71
Block RThroughput: 1.8
Differential Revision: https://reviews.llvm.org/D60838
llvm-svn: 358999
If we only match build vectors, we can miss some patterns
that use shuffles as seen in the affected tests.
Note that the underlying calls within getSplatSourceVector()
have the potential for compile-time explosion because of
exponential recursion looking through binop opcodes, but
currently the list of supported opcodes is very limited.
Both of those problems should be addressed in follow-up
patches.
llvm-svn: 358984
Summary:
The DAGCombiner is rewriting (canonicalizing) an ISD::ADD
with no common bits set in the operands as an ISD::OR node.
This could sometimes result in "missing out" on some
combines that normally are performed for ADD. To be more
specific this could happen if we already have rewritten an
ADD into OR, and later (after legalizations or combines)
we expose patterns that could have been optimized if we
had seen the OR as an ADD (e.g. reassociations based on ADD).
To make the DAG combiner less sensitive to if ADD or OR is
used for these "no common bits set" ADD/OR operations we
now apply most of the ADD combines also to an OR operation,
when value tracking indicates that the operands have no
common bits set.
Reviewers: spatel, RKSimon, craig.topper, kparzysz
Reviewed By: spatel
Subscribers: arsenm, rampitec, lebedev.ri, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59758
llvm-svn: 358965
This was supposed to be NFC, but the change in SDLoc
definitions causes instruction scheduling changes.
There's nothing x86-specific in this code, and it can
likely be used from DAGCombiner's simplifyVBinOp().
llvm-svn: 358930
This patch adds support for BigBitWidth -> SmallBitWidth bitcasts, splitting the DemandedBits/Elts accordingly.
The AMDGPU backend needed an extra (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) combine to encourage BFE creation, I investigated putting this in DAGCombine but it caused a lot of noise on other targets - some improvements, some regressions.
The X86 changes are all definite wins.
Differential Revision: https://reviews.llvm.org/D60462
llvm-svn: 358887
Summary:
If you pass two 1024 bit vectors in IR with AVX2 on Windows 64. Both vectors will be split in four 256 bit pieces. The four pieces of the first argument will be passed indirectly using 4 gprs. The second argument will get passed via pointers in memory.
The PartOffsets stored for the second argument are all in terms of its original 1024 bit size. So the PartOffsets for each piece are 32 bytes apart. So if we consider it for copy elision we'll only load an 8 byte pointer, but we'll move the address 32 bytes. The stack object size we create for the first part is probably wrong too.
This issue was encountered by ISPC. I'm working on getting a reduce test case, but wanted to go ahead and get feedback on the fix.
Reviewers: rnk
Reviewed By: rnk
Subscribers: dbabokin, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60801
llvm-svn: 358817
Fix for https://bugs.llvm.org/show_bug.cgi?id=41477. On the x32 ABI
with stack probing a dynamic alloca will result in a WIN_ALLOCA_32
with a 32-bit size. The current implementation tries to copy it into
RAX, resulting in a physreg copy error. Fix this by copying to EAX
instead. Also fix incorrect opcodes or registers used in subs.
llvm-svn: 358807
The MOVZX doesn't require an immediate to be encoded at all. Though it does use
a 2 byte opcode so its the same size as a 1 byte immediate. But it has a
separate source and dest register so can help avoid copies.
llvm-svn: 358805
There's one slight regression in here because we don't check that the immediate
already allowed movzx before the shift. I'll fix that next.
llvm-svn: 358804
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: hans, rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60800
llvm-svn: 358783
combineVectorTruncationWithPACKUS is currently splitting the upper bit bit masking into 128-bit subregs and then concatenating them back together.
This was originally done to avoid regressions that caused existing subregs to be concatenated to the larger type just for the AND masking before being extracted again. This was fixed by @spatel (notably rL303997 and rL347356).
This also lets SimplifyDemandedBits do some further improvements before it hits the recursive depth limit.
My only annoyance with this is that we were broadcasting some xmm masks but we seem to have lost them by moving to ymm - but that's a known issue as the logic in lowerBuildVectorAsBroadcast isn't great.
Differential Revision: https://reviews.llvm.org/D60375#inline-539623
llvm-svn: 358692
This replaces the MOVMSK combine introduced at D52121/rL342326
(movmsk (setne (and X, (1 << C)), 0)) -> (movmsk (X << C))
with the more general icmp lowering so it can pick up more cases through bitcasts - notably vXi8 cases which use vXi16 shifts+masks, this patch can remove the mask and use pcmpgtb(0,x) for the sra.
Differential Revision: https://reviews.llvm.org/D60625
llvm-svn: 358651
The test file has pairs of tests that are logically equivalent:
https://rise4fun.com/Alive/2zQ
%t4 = and i8 %t1, 8
%t5 = zext i8 %t4 to i16
%sh = shl i16 %t5, 2
%t6 = add i16 %sh, %t0
=>
%t4 = and i8 %t1, 8
%sh2 = shl i8 %t4, 2
%z5 = zext i8 %sh2 to i16
%t6 = add i16 %z5, %t0
...so if we can fold the shift op into LEA in the 1st pattern, then we
should be able to do the same in the 2nd pattern (unnecessary 'movzbl'
is a separate bug I think).
We don't want to do this any sooner though because that would conflict
with generic transforms that try to narrow the width of the shift.
Differential Revision: https://reviews.llvm.org/D60789
llvm-svn: 358622
Improves codegen demonstrated by D60512 - instructions represented by X86ISD::PERMV/PERMV3 can never memory fold the operand used for their index register.
This patch updates the 'isUseOfShuffle' helper into the more capable 'isFoldableUseOfShuffle' that recognises that the op is used for a X86ISD::PERMV/PERMV3 index mask and can't be folded - allowing us to use broadcast/subvector-broadcast ops to reduce the size of the mask constant pool data.
Differential Revision: https://reviews.llvm.org/D60562
llvm-svn: 358516
The pattern we replaced these with may be too hard to match as demonstrated by
PR41496 and PR41316.
This patch restores the intrinsics and then we can start focusing
on the optimizing the intrinsics.
I've mostly reverted the original patch that removed them. Though I modified
the avx512 intrinsics to not have masking built in.
Differential Revision: https://reviews.llvm.org/D60674
llvm-svn: 358427
Summary:
Use KnownBits::computeForAddSub/computeForAddCarry
in SelectionDAG::computeKnownBits when doing value
tracking for addition/subtraction.
This should improve the precision of the known bits,
as we only used to make a simple estimate of known
zeroes. The KnownBits support functions are also
able to deduce bits that are known to be one in the
result.
Reviewers: spatel, RKSimon, nikic, lebedev.ri
Reviewed By: nikic
Subscribers: nikic, javed.absar, lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60460
llvm-svn: 358372
Apparently there are some stray IMPLICIT_DEF operations that weren't in the
checks. Not sure if they've always been there or something changed at some
point.
llvm-svn: 358371
Other opcodes shouldn't be CSE'd until we can be sure debug info quality won't
be degraded.
This change also improves the IRTranslator so that in most places, but not all,
it creates constants using the MIRBuilder directly instead of first creating a
new destination vreg and then creating a constant. By doing this, the
buildConstant() method can just return the vreg of an existing G_CONSTANT
instead of having to create a COPY from it.
I measured a 0.2% improvement in compile time and a 0.9% improvement in code
size at -O0 ARM64.
Compile time:
Program base cse diff
test-suite...ark/tramp3d-v4/tramp3d-v4.test 9.04 9.12 0.8%
test-suite...Mark/mafft/pairlocalalign.test 2.68 2.66 -0.7%
test-suite...-typeset/consumer-typeset.test 5.53 5.51 -0.4%
test-suite :: CTMark/lencod/lencod.test 5.30 5.28 -0.3%
test-suite :: CTMark/Bullet/bullet.test 25.82 25.76 -0.2%
test-suite...:: CTMark/ClamAV/clamscan.test 6.92 6.90 -0.2%
test-suite...TMark/7zip/7zip-benchmark.test 34.24 34.17 -0.2%
test-suite :: CTMark/SPASS/SPASS.test 6.25 6.24 -0.1%
test-suite...:: CTMark/sqlite3/sqlite3.test 1.66 1.66 -0.1%
test-suite :: CTMark/kimwitu++/kc.test 13.61 13.60 -0.0%
Geomean difference -0.2%
Code size:
Program base cse diff
test-suite...-typeset/consumer-typeset.test 1315632 1266480 -3.7%
test-suite...:: CTMark/ClamAV/clamscan.test 1313892 1297508 -1.2%
test-suite :: CTMark/lencod/lencod.test 1439504 1423112 -1.1%
test-suite...TMark/7zip/7zip-benchmark.test 2936980 2904172 -1.1%
test-suite :: CTMark/Bullet/bullet.test 3478276 3445460 -0.9%
test-suite...ark/tramp3d-v4/tramp3d-v4.test 8082868 8033492 -0.6%
test-suite :: CTMark/kimwitu++/kc.test 3870380 3853972 -0.4%
test-suite :: CTMark/SPASS/SPASS.test 1434904 1434896 -0.0%
test-suite...Mark/mafft/pairlocalalign.test 764528 764528 0.0%
test-suite...:: CTMark/sqlite3/sqlite3.test 782092 782092 0.0%
Geomean difference -0.9%
Differential Revision: https://reviews.llvm.org/D60580
llvm-svn: 358369
We had many tablegen patterns for these instructions. And due to the
commutability of the patterns, tablegen expands them to even more patterns. All
together VPTESTMD patterns accounted for more the 50K of the 610K isel table.
This had gotten bad when we stopped canonicalizing AND to vXi64. This required
a pattern for every combination of bitcast input type.
This change moves the matching to custom code where it is easier to look through
the bitcasts without being concerned with the specific types.
The test changes are because we are now stricter with one use checks as its
required to make load folding legal. We now require the AND and any BITCAST to
only have a single use. This prevents forming VPTESTM and a VPAND with the same
inputs.
We now support broadcast loads for 128/256 patterns without VLX. We'll widen to
512-bit like and still fold the broadcast since the amount of memory read
doesn't change.
There are a few tests that got slightly longer because are now prefering
load + VPTESTM over XOR+VPCMPEQ for (seteq (load), allzeros). Previously we were
able to share the XOR with multiple VPTESTM instructions.
llvm-svn: 358359
We're better of emitting a single compare + kand rather than a compare for the
other use and a masked compare.
I'm looking into using custom instruction selection for VPTESTM to reduce the
ridiculous number of permutations of patterns in the isel table. Putting a one
use check on all masked compare folding makes load fold matching in the custom
code easier.
llvm-svn: 358358
Summary:
The Linux kernel uses PC-relative mode, so allow that when the code model is
"kernel".
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits, kees, nickdesaulniers
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60643
llvm-svn: 358343
// shuffle (concat X, undef), (concat Y, undef), Mask -->
// concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
The ARM changes with 'vtrn' and narrowed 'vuzp' are improvements.
The x86 changes look neutral or better. There's one test with an
extra instruction, but that could be reversed for a subtarget with
the right attributes. But by default, we want to avoid the 256-bit
op when possible (in my motivating benchmark, a handful of ymm ops
sprinkled into a sequence of xmm ops are triggering frequency
throttling on Haswell resulting in significantly worse perf).
Differential Revision: https://reviews.llvm.org/D60545
llvm-svn: 358291
Currently combineHorizontalPredicateResult only handles anyof/allof reduction patterns of legal types, which can be tricky to match as type legalization of bools can introduce bitcasts/truncs/extensions.
This patch extends combineHorizontalPredicateResult to recognise vXi1 bool reductions as well and uses the existing combineBitcastvxi1 helper to create the MOVMSK necessary to then compare the signmask result.
This ensures the accuracy of the reduction costs added in D60403 which assume the MOVMSK generation.
Differential Revision: https://reviews.llvm.org/D60610
llvm-svn: 358286
It causes clang to crash while building Chromium. See https://crbug.com/952230
for reproducer.
> The PrologEpilogInserter need to insert a DW_OP_deref_size before
> prepending a memory location expression to an already implicit
> expression to avoid having the existing expression act on the memory
> address instead of the value behind it.
>
> The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
> big-endian targets need to read the right size as simply truncating a
> larger read would yield the wrong result (LSB bytes are not at the lower
> address).
>
> Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 358281
The PrologEpilogInserter need to insert a DW_OP_deref_size before
prepending a memory location expression to an already implicit
expression to avoid having the existing expression act on the memory
address instead of the value behind it.
The reason for using DW_OP_deref_size and not plain DW_OP_deref is that
big-endian targets need to read the right size as simply truncating a
larger read would yield the wrong result (LSB bytes are not at the lower
address).
Differential Revision: https://reviews.llvm.org/D59687
llvm-svn: 358268
If the upper bits of the SHL result aren't used, we might be able to use a narrower shift. For example, on X86 this can turn a 64-bit into 32-bit enabling a smaller encoding.
Differential Revision: https://reviews.llvm.org/D60358
llvm-svn: 358257
If the vector setcc has been legalized then we will need to convert a vector boolean of 0 or -1 to a scalar boolean of 0 or 1.
The added test case previously crashed in 32-bit mode by creating a setcc with an i64 condition that type legalization couldn't expand.
llvm-svn: 358218