Add a helper method to check if an index vector contains a permutation of its indices. Additionally, refactor applyPermutationToVector to take int64_t.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110135
This pass transforms SCF.ForOp operations to SCF.WhileOp. The For loop condition is placed in the 'before' region of the while operation, and indctuion variable incrementation + the loop body in the 'after' region. The loop carried values of the while op are the induction variable (IV) of the for-loop + any iter_args specified for the for-loop.
Any 'yield' ops in the for-loop are rewritten to additionally yield the (incremented) induction variable.
This transformation is useful for passes where we want to consider structured control flow solely on the basis of a loop body and the computation of a loop condition. As an example, when doing high-level synthesis in CIRCT, the incrementation of an IV in a for-loop is "just another part" of a circuit datapath, and what we really care about is the distinction between our datapath and our control logic (the condition variable).
Differential Revision: https://reviews.llvm.org/D108454
This patch adds mergeLocalIds andmergeSymbolIds as public functions
for FlatAffineConstraints and FlatAffineValueConstraints respectively.
mergeLocalIds is also required to support divisions in intersection,
subtraction, equality checks, and complement for PresburgerSet.
This patch is part of a series of patches aimed at generalizing affine
dependence analysis.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110045
Lots of custom ops have hand-rolled comma-delimited parsing loops, as does
the MLIR parser itself. Provides a standard interface for doing this that
is less error prone and less boilerplate.
While here, extend Delimiter to support <> and {} delimited sequences as
well (I have a use for <> in CIRCT specifically).
Differential Revision: https://reviews.llvm.org/D110122
This revision refactors ElementsAttr into an Attribute Interface.
This enables a common interface with which to interact with
element attributes, without needing to modify the builtin
dialect. It also removes a majority (if not all?) of the need for
the current OpaqueElementsAttr, which was originally intended as
a way to opaquely represent data that was not representable by
the other builtin constructs.
The new ElementsAttr interface not only allows for users to
natively represent their data in the way that best suits them,
it also allows for efficient opaque access and iteration of the
underlying data. Attributes using the ElementsAttr interface
can directly expose support for interacting with the held
elements using any C++ data type they claim to support. For
example, DenseIntOrFpElementsAttr supports iteration using
various native C++ integer/float data types, as well as
APInt/APFloat, and more. ElementsAttr instances that refer to
DenseIntOrFpElementsAttr can use all of these data types for
iteration:
```c++
DenseIntOrFpElementsAttr intElementsAttr = ...;
ElementsAttr attr = intElementsAttr;
for (uint64_t value : attr.getValues<uint64_t>())
...;
for (APInt value : attr.getValues<APInt>())
...;
for (IntegerAttr value : attr.getValues<IntegerAttr>())
...;
```
ElementsAttr also supports failable range/iterator access,
allowing for selective code paths depending on data type
support:
```c++
ElementsAttr attr = ...;
if (auto range = attr.tryGetValues<uint64_t>()) {
for (uint64_t value : *range)
...;
}
```
Differential Revision: https://reviews.llvm.org/D109190
Currently DenseElementsAttr only exposes the ability to get the full range of values for a given type T, but there are many situations where we just want the beginning/end iterator. This revision adds proper value_begin/value_end methods for all of the supported T types, and also cleans up a bit of the interface.
Differential Revision: https://reviews.llvm.org/D104173
SparseElementsAttr currently does not perform any verfication on construction, with the only verification existing within the parser. This revision moves the parser verification to SparseElementsAttr, and also adds additional verification for when a sparse index is not valid.
Differential Revision: https://reviews.llvm.org/D109189
Some patterns may share the common DAG structures. Generate a static
function to do the match logic to reduce the binary size.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105797
For `memref.subview` operations, when there are more than one
unit-dimensions, the strides need to be used to figure out which of
the unit-dims are actually dropped.
Differential Revision: https://reviews.llvm.org/D109418
Add an interface that allows grouping together all covolution and
pooling ops within Linalg named ops. The interface currently
- the indexing map used for input/image access is valid
- the filter and output are accessed using projected permutations
- that all loops are charecterizable as one iterating over
- batch dimension,
- output image dimensions,
- filter convolved dimensions,
- output channel dimensions,
- input channel dimensions,
- depth multiplier (for depthwise convolutions)
Differential Revision: https://reviews.llvm.org/D109793
This pass transforms SCF.ForOp operations to SCF.WhileOp. The For loop condition is placed in the 'before' region of the while operation, and indctuion variable incrementation + the loop body in the 'after' region. The loop carried values of the while op are the induction variable (IV) of the for-loop + any iter_args specified for the for-loop.
Any 'yield' ops in the for-loop are rewritten to additionally yield the (incremented) induction variable.
This transformation is useful for passes where we want to consider structured control flow solely on the basis of a loop body and the computation of a loop condition. As an example, when doing high-level synthesis in CIRCT, the incrementation of an IV in a for-loop is "just another part" of a circuit datapath, and what we really care about is the distinction between our datapath and our control logic (the condition variable).
Differential Revision: https://reviews.llvm.org/D108454
Add a new version of fusion on tensors that supports the following scenarios:
- support input and output operand fusion
- fuse a producer result passed in via tile loop iteration arguments (update the tile loop iteration arguments)
- supports only linalg operations on tensors
- supports only scf::for
- cannot add an output to the tile loop nest
The LinalgTileAndFuseOnTensors pass tiles the root operation and fuses its producers.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D109766
The discussion on forum:
https://llvm.discourse.group/t/bug-in-partial-dialect-conversion/4115
The `applyPartialConversion` didn't handle the operations, that were
marked as illegal inside dynamic legality callback.
Instead of reporting error, if such operation was not converted to legal set,
the method just added it to `unconvertedSet` in the same way as unknown operations.
This patch fixes that and handle dynamically illegal operations as well.
The patch includes 2 fixes for existing passes:
* `tensor-bufferize` - explicitly mark `std.return` as legal.
* `convert-parallel-loops-to-gpu` - ugly fix with marking visited operations
to avoid recursive legality checks.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D108505
Add a constant propagator for gpu.launch op in cases where the
grid/thread IDs can be trivially determined to take a single constant
value of zero.
Differential Revision: https://reviews.llvm.org/D109994
Note that this revision adds a very tiny bit of constant folding in the
sparse compiler lattice construction. Although I am generally trying to
avoid such canonicalizations (and rely on other passes to fix this instead),
the benefits of avoiding a very expensive disjunction lattice construction
justify having this special code (at least for now).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D109939
Add the addTileLoopIvsToIndexOpResults method to shift the IndexOp results after tiling.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109761
Express the input shape definitions of convolution and pooling operations in terms of the output shapes, filter shapes, strides, and dilations.
Reviewed By: shabalin, rsuderman, stellaraccident
Differential Revision: https://reviews.llvm.org/D109815
Adds a new rewrite directive returnType that can be added at the end of an op's
argument list to explicitly specify return types.
```
(OpX $v0, $v1, (returnType "$_builder.getI32Type()"))
```
Pass in a bound value to copy its return type, or pass a native code call to
dynamically create new types.
```
(OpX $v0, $v1, (returnType $v0, (NativeCodeCall<"..."> $v1)))
```
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D109472
Summary: Making the late transformations opt-in results in less surprising behavior when composing multiple calls to the codegen strategy.
Reviewers:
Subscribers:
Differential revision: https://reviews.llvm.org/D109820
This seems in-line with the intent and how we build tools around it.
Update the description for the flag accordingly.
Also use an injected thread pool in MLIROptMain, now we will create
threads up-front and reuse them across split buffers.
Differential Revision: https://reviews.llvm.org/D109802
Both copy/alloc ops are using memref dialect after this change.
Reviewed By: silvas, mehdi_amini
Differential Revision: https://reviews.llvm.org/D109480
Add the makeComposedExtractSliceOp method that creates an ExtractSliceOp and folds chains of ExtractSliceOps by computing the sum of their offsets and by multiplying their strides.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109601
This tiling option scalarizes all dynamic dimensions, i.e., it tiles all dynamic dimensions by 1.
This option is useful for linalg ops with partly dynamic tensor dimensions. E.g., such ops can appear in the partial iteration after loop peeling. After scalarizing dynamic dims, those ops can be vectorized.
Differential Revision: https://reviews.llvm.org/D109268
Only scf.for loops are supported at the moment. linalg.tiled_loop support will be added in a subsequent commit.
Only static tensor sizes are supported. Loops for dynamic tensor sizes can be peeled, but the generated code is not optimal due to a missing canonicalization pattern.
Differential Revision: https://reviews.llvm.org/D109043
* Revert https://reviews.llvm.org/D107307 so that both LHS and RHS have
the same layout with K0 as the innermost dimension.
* Continuing from https://reviews.llvm.org/D107003, move also 'K'
to the outer side, so that now the inter-tile dimensions as all outer,
and the intra-tile dimensions are all inner.
Reviewed By: asaadaldien
Differential Revision: https://reviews.llvm.org/D109692
Types and attributes now have a `hasTrait` function that allow users to check
if a type defines a trait.
Also, AbstractType and AbstractAttribute has now a `hasTraitFn` field to carry
the implementation of the `hasTrait` function of the concrete type or attribute.
This patch also adds the remaining functions to access type and attribute traits
in TableGen.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D105202
Tosa.while shape inference requires repeatedly running shape inference across
the body of the loop until the types become static as we do not know the number
of iterations required by the loop body. Once the least specific arguments are
known they are propagated to both regions.
To determine the final end type, the least restrictive types are determined
from all yields.
Differential Revision: https://reviews.llvm.org/D108801
The original version of the bufferization pattern for linalg.generic would
manually clone operations within the region to the bufferized clone of the
operation. This triggers legality requirements on those operations in the
conversion infra. Instead, this now uses the rewriter to inline the region
instead, avoiding those legality requirements.
Differential Revision: https://reviews.llvm.org/D109581
Generate an scf.for instead of an scf.if for the partial iteration. This is for consistency reasons: The peeling of linalg.tiled_loop also uses another loop for the partial iteration.
Note: Canonicalizations patterns may rewrite partial iterations to scf.if afterwards.
Differential Revision: https://reviews.llvm.org/D109568
Extend the signature of the tile loop nest region builder to take all operand values to use and not just the scf::For iterArgs. This change allows us to pass in all block arguments of TiledLoop and use them directly instead of replacing them after the loop generation.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D109569
Further enhance the set of operations that can be handled by the sparse compiler
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D109413
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
OpenMP reductions need a neutral element, so we match some known reduction
kinds (integer add/mul/or/and/xor, float add/mul, integer and float min/max) to
define the neutral element and the atomic version when possible to express
using atomicrmw (everything except float mul). The SCF-to-OpenMP pass becomes a
module pass because it now needs to introduce new symbols for reduction
declarations in the module.
Reviewed By: chelini
Differential Revision: https://reviews.llvm.org/D107549
When tiling a LinalgOp, extract_slice/insert_slice pairs are inserted. To avoid going out-of-bounds when the tile size does not divide the shape size evenly (at the boundary), AffineMin ops are inserted. Some ops have assumptions regarding the dimensions of inputs/outputs. E.g., in a `A * B` matmul, `dim(A, 1) == dim(B, 0)`. However, loop bounds use either `dim(A, 1)` or `dim(B, 0)`.
With this change, AffineMin ops are expressed in terms of loop bounds instead of tensor sizes. (Both have the same runtime value.) This simplifies canonicalizations.
Differential Revision: https://reviews.llvm.org/D109267
This patch refactors the existing implementation of computing an explicit
representation of an identifier as a floordiv in terms of other identifiers and
exposes this computation as a public function.
The computation of this representation is required to support local identifiers
in PresburgerSet subtract, complement and isEqual.
Reviewed By: bondhugula, arjunp
Differential Revision: https://reviews.llvm.org/D106662