This patch adds support for the 'return' and 'call' ops to the bare-ptr
calling convention. These changes also align the bare-ptr calling
convention code with the latest changes in the default calling convention
and reduce the amount of customization code needed.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87724
* Providing stable, C-accessible definitions for bridging MLIR Python<->C APIs, we eliminate inter-extension dependencies (i.e. they can all share a diamond dependency on the MLIR C-API).
* Just provides accessors for context and module right now.
* Needed in NPComp in ~a week or so for high level Torch APIs.
Differential Revision: https://reviews.llvm.org/D88426
This patch introduces the acc.shutdown operation that represents an OpenACC shutdown directive.
Clauses are derived from the spec 2.14.2
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88272
This patch introduces the init operation that represents the init executable directive
from the OpenACC 3.0 specifications.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88254
This patch introduce the wait operation that represent the OpenACC wait directive.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88125
- Add a minimalist C API for mlir::Dialect.
- Allow one to query the context about registered and loaded dialects.
- Add API for loading dialects.
- Provide functions to register the Standard dialect.
When used naively, this will require to separately register each dialect. When
we have more than one exposed, we can add variadic macros that expand to
individual calls.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D88162
This patch introduce the update operation that represent the OpenACC update directive.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88102
Manually-defined named ops do not currently support `init_tensors` or return values and may never support them. Add extra interface to the StructuredOpInterface so that we can still write op-agnostic transformations based on StructuredOpInterface.
This is an NFC extension in preparation for tiling on tensors.
Differential Revision: https://reviews.llvm.org/D88481
This revision changes the signatures of helper function that Linalg uses to create loops so that they can also take iterArgs.
iterArgs are asserted empty to ensure no functional change.
This is a mechanical change in preparation of tiling on linalg on tensors to avoid polluting the implementation with an NFC change.
Differential Revision: https://reviews.llvm.org/D88480
The previous implementation did not support sinking simple expressions. In particular,
it is often beneficial to sink dim operations.
Differential Revision: https://reviews.llvm.org/D88439
Summary:
========
Bugzilla Ticket No: Bug 46884 [https://bugs.llvm.org/show_bug.cgi?id=46884]
Flush op assembly syntax was ambiguous:
Consider the below test case:
flush operation is not having any arguments.
But the next statement token i.e "%2" is read as the argument for flush operation and then translator issues an error.
***************************************************************
$ cat -n flush.mlir
1 llvm.func @_QQmain(%arg0: !llvm.i32) {
2 %0 = llvm.mlir.constant(1 : i64) : !llvm.i64
3 %1 = llvm.alloca %0 x !llvm.i32 {in_type = i32, name = "a"} : (!llvm.i64) -> !llvm.ptr<i32>
4 omp.flush
5 %2 = llvm.load %1 : !llvm.ptr<i32>
6 llvm.return
7 }
$ mlir-translate -mlir-to-llvmir flush.mlir
flush.mlir:5:6: error: expected ':'
%2 = llvm.load %1 : !llvm.ptr<i32>
^
***************************************************************
Solution:
=========
Introduced begin ( `(` ) and end token ( `)` ) to determince the begin and end of variadic arguments.
The patch includes code changes and testcase modifications.
Reviewed By: Valentin Clement, Mehdi AMINI
Differential Revision: https://reviews.llvm.org/D88376
Add a basic verifier for the data operation following the restriction from the standard.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88334
The OmpDialect is in practice optional during translation to LLVM IR: the code is tolerant
to have a "nullptr" when not present / needed.
The dependency still exists on the export to LLVMIR.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88351
Adding missing code that should have been part of "D85869: Utility to
vectorize loop nest using strategy."
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D88346
- use select-ops to make the lowering simpler
- change style of FileCheck variables names to be consistent
- change some variable names in the code to be more explicit
Differential Revision: https://reviews.llvm.org/D88258
Recently, restrictions on vector reductions were made more relaxed by
accepting any width signless integer and floating-point. This CL relaxes
the restriction even more by including unsigned and signed integers.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D88442
(1) simplify integer printing logic by always using 64-bit print
(2) add index support (since vector<16xindex> is planned to be added)
(3) adjust naming convention print_x -> printX
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D88436
Add operands to represent if and deviceptr. Default clause is represented with
an attribute.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88331
This patch remove the printer/parser for the acc.data operation since its syntax
fits nicely with the assembly format. It reduces the maintenance for this op.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88330
This patch remove the detach and delete operands. Those operands represent the detach
and delete clauses that will appear in another operation acc.exit_data
Reviewed By: kiranktp, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88326
Normalizing memrefs failed when a caller of symbolic use in a function
can not be casted to `CallOp`. This patch avoids the failure by checking
the result of the casting. If the caller can not be casted to `CallOp`,
it is skipped.
Differential Revision: https://reviews.llvm.org/D87746
- Eliminate incorrect |
- Eliminate memspace0 as the memory spaces currently are integer literals and memory
space 0 is not explicitly printed.
Differential Revision: https://reviews.llvm.org/D88171
This generalizes printing beyond just i1,i32,i64 and also accounts
for signed and unsigned interpretation in the output.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D88290
Allow propagating optional user defined attributes during SCF to GPU conversion. Gives opportunity to use user defined attributes in the further lowering. For example setting subgroup size, or other options for GPU dispatch. This does not break backward compatibility and does not require new attributes, just allow passing optional ones.
Differential Revision: https://reviews.llvm.org/D88203
This patch moves the memory space field from MemRefType and UnrankedMemRefType
to their base class BaseMemRefType so that it can be retrieved from it without
downcasting it to the specific memref.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D87649
This pass converts shape.cstr_* ops to eager (side-effecting)
error-handling code. After that conversion is done, the witnesses are
trivially satisfied and are replaced with `shape.const_witness true`.
Differential Revision: https://reviews.llvm.org/D87941
Fixed an error when deserializing the SPIR-V binary
to MLIR SPIR-V. Before, the SPIR-V dialect was not loaded
explicitly into the context, which resulted in unregistered
operation error.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D88223
Conversion to LLVM becomes confusing and incorrect if someone tries to lower
STD -> LLVM and only then GPULaunchFuncOp to LLVM separately. Although it is
technically allowed now, it works incorrectly because of the argument
promotion. The correct way to use this conversion pattern is to add to the
STD->LLVM patterns before running the pass.
Differential Revision: https://reviews.llvm.org/D88147
This tweaks the generated code for parsing attributes with a custom
directive to call `addAttribute` on the `OperationState` directly,
and adds a newline after this call. Previously, the generated code
would call `addAttribute` on the `OperationState` field `attributes`,
which has no such method and fails to compile. Furthermore, the lack
of newline would generate code with incorrectly formatted single line
`if` statements. Added tests for parsing and printing attributes with
a custom directive.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D87860
* Added mlirRegisterAllDialects() to the python API until a more complete registration design emerges for it.
Differential Revision: https://reviews.llvm.org/D88155
- Use TypeRange instead of ArrayRef<Type> where possible.
- Change some of the custom builders to also use TypeRange
Differential Revision: https://reviews.llvm.org/D87944
- Change the default builders to use TypeRange instead of ArrayRef<Type>
- Custom builders defined in LinalgStructuredOps now conflict with the default
separate param ones, but the default collective params one is still needed. Resolve
this by replicating the collective param builder as a custom builder and skipping
the generation of default builders for these ops.
Differential Revision: https://reviews.llvm.org/D87926
Blocks in a region and operations in a block are organized in a linked list.
The C API only provides functions to append or to insert elements at the
specified numeric position in the list. The latter is expensive since it
requires to traverse the list. Add insert before/after functionality with low
cost that relies on the iplist elements being convertible to iterators.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D88148
* The API is a bit more verbose than I feel like it needs to be. In a follow-up I'd like to abbreviate some things and look in to creating aliases for common accessors.
* There is a lingering lifetime hazard between the module and newly added operations. We have the facilities now to solve for this but I will do that in a follow-up.
* We may need to craft a more limited API for safely referencing successors when creating operations. We need more facilities to really prove that out and should defer for now.
Differential Revision: https://reviews.llvm.org/D87996
* Removes the half-completed prior attempt at region/block mutation in favor of new approach to ownership.
* Will re-add mutation more correctly in a follow-on.
* Eliminates the detached state on blocks and regions, simplifying the ownership hierarchy.
* Adds both iterator and index based access at each level.
Differential Revision: https://reviews.llvm.org/D87982
* Fixes a rather egregious bug with respect to the inability to return arbitrary objects from py::init (was causing aliasing of multiple py::object -> native instance).
* Makes Modules and Operations referencable types so that they can be reliably depended on.
* Uniques python operation instances within a context. Opens the door for further accounting.
* Next I will retrofit region and block to be dependent on the operation, and I will attempt to model the API to avoid detached regions/blocks, which will simplify things a lot (in that world, only operations can be detached).
* Added quite a bit of test coverage to check for leaks and reference issues.
* Supercedes: https://reviews.llvm.org/D87213
Differential Revision: https://reviews.llvm.org/D87958
This patch switch from using bool variables to OptionalParseResult for the parsing
inside loop operation. This is already done for parallel operation and this patch unify this
in the dialect.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88111
A sequence of two reshapes such that one of them is just adding unit
extent dims can be folded to a single reshape.
Differential Revision: https://reviews.llvm.org/D88057
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.
Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637
Recommit after fixing an ASAN issue: the callback lambda needs to be
allocated to a temporary to have its lifetime extended to the end of the
current block instead of just the current call expression.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D86392
The OpBuilder is required to start with OpBuilder and OperationState, so remove
the need for the user to specify it. To make it simpler to update callers,
retain the legacy behavior for now and skip injecting OpBuilder/OperationState
when params start with OpBuilder.
Related to bug 47442.
Differential Revision: https://reviews.llvm.org/D88050
The assertion falsely expected ranked memrefs only. Now both, ranked and
unranked memrefs are allowed.
Differential Revision: https://reviews.llvm.org/D88080
This reverts commit 385c3f43fc.
Test mlir/test/Pass:dynamic-pipeline-fail-on-parent.mlir.test fails
when run with ASAN:
ERROR: AddressSanitizer: stack-use-after-scope on address ...
Reviewed By: bkramer, pifon2a
Differential Revision: https://reviews.llvm.org/D88079
Change the indexing map to iterate over the (b, x0, x1, z0, z1, q, k) instead of (b, x0, x1, k, q, z0, z1) to evaluate the convolution expression:
Y[b, x0, x1, k] = sum(W[z0, z1, q, k] * X[b, x0 + z0, x1 + z1, q], z0, z1, q)
This allows llvm auto vectorize to work and has better locality resulting significant performance improvments
Differential Revision: https://reviews.llvm.org/D87781
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.
Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D86392
This patch adds a utility based on SuperVectorizer to vectorize an
affine loop nest using a given vectorization strategy. This strategy allows
targeting specific loops for vectorization instead of relying of the
SuperVectorizer analysis to choose the right loops to vectorize.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85869
check-mlir target run tests simultaneously with multiple threads. This caused multiple threads to invoke the `lld:🧝:link()` interface at the same time. Since the interface does not have a thread-safe implementation, add a metex to prevent multi-threaded access.
I discovered this by looking the the failure stack trace. lld/ELF/symbolTable.cpp, SymbolTable::insert() hit into an assert with related to Epoch Trackers. The root cause is to due to there is no protection around the symMap (update) which is implemented in non-thread safe data structure: denseMap.
Differential Revision: https://reviews.llvm.org/D88038
Add attributes for the async, wait and self clauses. These clauses can be present without
values. When this is the case they are modelled with an attribute instead of operands.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87991
This adds support for the interface and provides unambigious information
on the control flow as it is unconditional on any runtime values.
The code is tested through confirming that buffer-placement behaves as
expected.
Differential Revision: https://reviews.llvm.org/D87894
This crash only happens when a function pass is followed by a module
pass. In this case the splitting of the pass pipeline didn't handle
properly the verifier passes and ended up with an odd number of pass in
the pipeline, breaking an assumption of the local crash reproducer
executor and hitting an assertion.
Differential Revision: https://reviews.llvm.org/D88000
Vendor/device information are not resource limits. Moving to
target environment directly for better organization.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D87911
* Per thread https://llvm.discourse.group/t/revisiting-ownership-and-lifetime-in-the-python-bindings/1769
* Reworks contexts so it is always possible to get back to a py::object that holds the reference count for an arbitrary MlirContext.
* Retrofits some of the base classes to automatically take a reference to the context, elimintating keep_alives.
* More needs to be done, as discussed, when moving on to the operations/blocks/regions.
Differential Revision: https://reviews.llvm.org/D87886
I realized when using this that one can't get very good error messages
without an additional message attribute.
Differential Revision: https://reviews.llvm.org/D87875
constBuilderCall was not defined for TypeArrayAttr, resulting in tblgen not emitting the correct code when TypeArrayAttr is used with a default valued attribute.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D87907
Roundtripping SPIR-V modules used the same MLIRContext object for both
ways of the trip. This resulted in deserialization using a context
object already containing Types constructed during serialization.
This commit rectifies that by creating a new MLIRContext during
deserialization.
Reviewed By: mravishankar, antiagainst
Differential Revision: https://reviews.llvm.org/D87692
Add missing operands to represent copyin with readonly modifier, copyout with zero modifier
and create with zero modifier.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87874
Following patch D87712, this patch switch AnyInteger for operands gangNum, gangStatic,
workerNum, vectoreLength and tileOperands to Index and AnyInteger.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87848
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
This op is a catch-all for creating witnesses from various random kinds
of constraints. In particular, I when dealing with extents directly,
which are of `index` type, one can directly use std ops for calculating
the predicates, and then use cstr_require for the final conversion to a
witness.
Differential Revision: https://reviews.llvm.org/D87871
- Change OpClass new method addition to find and eliminate any existing methods that
are made redundant by the newly added method, as well as detect if the newly added
method will be redundant and return nullptr in that case.
- To facilitate that, add the notion of resolved and unresolved parameters, where resolved
parameters have each parameter type known, so that redundancy checks on methods
with same name but different parameter types can be done.
- Eliminate existing code to avoid adding conflicting/redundant build methods and rely
on this new mechanism to eliminate conflicting build methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47095
Differential Revision: https://reviews.llvm.org/D87059
Add support to tile affine.for ops with parametric sizes (i.e., SSA
values). Currently supports hyper-rectangular loop nests with constant
lower bounds only. Move methods
- moveLoopBody(*)
- getTileableBands(*)
- checkTilingLegality(*)
- tilePerfectlyNested(*)
- constructTiledIndexSetHyperRect(*)
to allow reuse with constant tile size API. Add a test pass -test-affine
-parametric-tile to test parametric tiling.
Differential Revision: https://reviews.llvm.org/D87353
Add support for return values in affine.for yield along the same lines
as scf.for and affine.parallel.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D87437
Fold the operation if the source is a scalar constant or splat constant.
Update transform-patterns-matmul-to-vector.mlir because the broadcast ops are folded in the conversion.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D87703
This patch change the type of operands async, wait, numGangs, numWorkers and vectorLength from index
to AnyInteger to fit with acc.loop and the OpenACC specification.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87712
Adds a pattern that replaces a chain of two tensor_cast operations by a single tensor_cast operation if doing so will not remove constraints on the shapes.
C API test uses FileCheck comments inside C code and needs to
temporarily switch off clang-format to prevent it from messing with
FileCheck directives. A recently landed commit forgot to turn it back on
after a block of FileCheck comments. Fix that.
`swapId` used to be a static function in `AffineStructures.cpp`. This diff makes it accessible from the external world by turning it into a member function of `FlatAffineConstraints`. This will be very helpful for other projects that need to manipulate the content of `FlatAffineConstraints`.
Differential Revision: https://reviews.llvm.org/D87766
ConvOp vectorization supports now only convolutions of static shapes with dimensions
of size either 3(vectorized) or 1(not) as underlying vectors have to be of static
shape as well. In this commit we add support for convolutions of any size as well as
dynamic shapes by leveraging existing matmul infrastructure for tiling of both input
and kernel to sizes accepted by the previous version of ConvOp vectorization.
In the future this pass can be extended to take "tiling mask" as a user input which
will enable vectorization of user specified dimensions.
Differential Revision: https://reviews.llvm.org/D87676
These canonicalizations are already handled by folding which will occur
in a superset of situations, so they are being removed.
Differential Revision: https://reviews.llvm.org/D87706
This patch provides C API for MLIR affine map.
- Implement C API for AffineMap class.
- Add Utils.h to include/mlir/CAPI/, and move the definition of the CallbackOstream to Utils.h to make sure mlirAffineMapPrint work correct.
- Add TODO for exposing the C API related to AffineExpr and mutable affine map.
Differential Revision: https://reviews.llvm.org/D87617
Add missing operands to represent copin with readonly modifier, copyout with zero
modifier, create with zero modifier and default clause.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87733
Numerous MLIR functions return instances of `StringRef` to refer to a
non-owning fragment of a string (usually owned by the context). This is a
relatively simple class that is defined in LLVM. Provide a simple wrapper in
the MLIR C API that contains the pointer and length of the string fragment and
use it for Standard attribute functions that return StringRef instead of the
previous, callback-based mechanism.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D87677
Emit some more information when printing/dumping `Value`s of
`BlockArgument` kind. This is purely to help for debugging purposes.
Differential Revision: https://reviews.llvm.org/D87670
Rename 'setInsertionPointAfter(Value)' API to avoid ambiguity with
'setInsertionPointAfter(Operation *)' for SingleResult operations which
implicitly convert to Value (see D86756).
Differential Revision: https://reviews.llvm.org/D87155
Add a verifier for the loop op in the OpenACC dialect. Check basic restriction
from 2.9 Loop construct from the OpenACC 3.0 specs.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87546
This patch adds the missing print for the vector_length in the parallel operation.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87630
This add canonicalizer for
- extracting an element from a dynamic_tensor_from_elements
- propagating constant operands to the type of dynamic_tensor_from_elements
Differential Revision: https://reviews.llvm.org/D87525
When packing function results into a structure during the standard-to-llvm
dialect conversion, do not assume the conversion was successful and propagate
nullptr as error state.
Fixes PR45184.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D87605
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86811
Added support to the Std dialect cast operations to do casts in vector types when feasible.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87410
Type converter may fail and return nullptr on unconvertible types. The function
conversion did not include a check and was attempting to use a nullptr type to
construct an LLVM function, leading to a crash. Add a check and return early.
The rest of the call stack propagates errors properly.
Fixes PR47403.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D87075
This introduces a builder for the more general case that supports zero
elements (where the element type can't be inferred from the ValueRange,
since it might be empty).
Also, fix up some cases in ShapeToStandard lowering that hit this. It
happens very easily when dealing with shapes of 0-D tensors.
The SameOperandsAndResultElementType is redundant with the new
TypesMatchWith and prevented having zero elements.
Differential Revision: https://reviews.llvm.org/D87492
Addressed some CR issues pointed out in D87111. Formatting and other nits.
The original Diff D87111 - Add an option for unrolling loops up to a factor.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87313
This revision refactors and cleans up a bunch of things to simplify StructuredOpInterface
before work can proceed on Linalg on tensors:
- break out pieces of the StructuredOps trait that are part of the StructuredOpInterface,
- drop referenceIterators and referenceIndexingMaps that end up being more confusing than useful,
- drop NamedStructuredOpTrait
Previously only the input type was printed, and the parser applied it to
both input and output, creating an invalid transpose. Print and parse
both types, and verify that they match.
Differential Revision: https://reviews.llvm.org/D87462
This changes adjusts the documentation generation for the AVX512 dialect. The machanism to generate documentation was changed with 1a083f027f.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D87460
The LinalgTilingPattern class dervied from the base deletes the
original operation. This allows for the use case where the more
transformations are necessary on the original operation after
tiling. In such cases the pattern can derive from
LinalgBaseTilingPattern instead of LinalgTilingPattern.
Differential Revision: https://reviews.llvm.org/D87308
Currently the global operator!=(bool, bool) is selected due to the implicit bool
conversion operator. Since this is never the desired semantics, we give it a
standard operator!= and make the bool conversion explicit.
Depends On D86809
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86810
This allows Dialect to follow the MLIR style of nullable objects, and in fact is expected by `Dialect::operator bool() const` which already tests whether `def == nullptr`. This just wasn't a reachable situation, because the constructor was dereferencing the pointer unconditionally.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86807
Also make the behavior of getting a dialect more forgiving, in the case where
there isn't a dialect associated with an attribute.
Depends On D86807
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86809
This patch adds a new named structured op to accompany linalg.matmul and
linalg.matvec. We needed it for our codegen, so I figured it would be useful
to add it to Linalg.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D87292
Rationale:
After some discussion we decided that it is safe to assume 32-bit
indices for all subscripting in the vector dialect (it is unlikely
the dialect will be used; or even work; for such long vectors).
So rather than detecting specific situations that can exploit
32-bit indices with higher parallel SIMD, we just optimize it
by default, and let users that don't want it opt-out.
Reviewed By: nicolasvasilache, bkramer
Differential Revision: https://reviews.llvm.org/D87404
Also refactor the getViewSizes method to work on LinalgOp instead of
being a templated version. Keeping the templated version for
compatibility.
Differential Revision: https://reviews.llvm.org/D87303
I was having a lot of trouble parsing the messages. In particular, the
messages like:
```
<stdin>:3:8: error: 'scf.if' op along control flow edge from Region #0 to scf.if source #1 type '!npcomprt.tensor' should match input #1 type 'tensor<?xindex>'
```
In particular, one thing that kept catching me was parsing the "to scf.if
source #1 type" as one thing, but really it is
"to parent results: source type #1".
Differential Revision: https://reviews.llvm.org/D87334
This commit specifies reduction dimensions for ConvOps. This prevents
running reduction loops in parallel and enables easier detection of kernel dimensions
which we will need later on.
Differential Revision: https://reviews.llvm.org/D87288
This commit introduces end-to-end integration tests for
convolutions that test multiple ways of ConvOps lowering.
Differential Revision: https://reviews.llvm.org/D87277
The current BufferPlacement transformation cannot handle loops properly. Buffers
passed via backedges will not be freed automatically introducing memory leaks.
This CL adds support for loops to overcome these limitations.
Differential Revision: https://reviews.llvm.org/D85513
Take advantage of the new `dynamic_tensor_from_elements` operation in `std`.
Instead of stack-allocated memory, we can now lower directly to a single `std`
operation.
Differential Revision: https://reviews.llvm.org/D86935
The rewrite engine's cost model may determine some patterns to be irrelevant
ahead of their application. These patterns were silently ignored previously and
now cause a message in `--debug` mode.
Differential Revision: https://reviews.llvm.org/D87290
- Introduce a new BlockRange class to represent range of blocks (constructible from
an ArrayRef<Block *> or a SuccessorRange);
- Change Operation::create() methods to use TypeRange for result types, ValueRange for
operands and BlockRange for successors.
Differential Revision: https://reviews.llvm.org/D86985
Currently, there is no option to allow for unrolling a loop up to a specific factor (specified by the user).
The code for doing that is there and there are benefits when unrolling is done to smaller loops (smaller than the factor specified).
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87111
VectorToSCF.cpp:515:47: error: specialization of 'template<class TransferOpTy> mlir::LogicalResult mlir::VectorTransferRewriter<TransferOpTy>::matchAndRewrite(mlir::Operation*, mlir::PatternRewriter&) const' in different namespace [-fpermissive]
Put back anonymous namespace to work around GCC5 bug.
VectorToSCF.cpp:241:61: error: specialization of 'template<class ConcreteOp> mlir::LogicalResult {anonymous}::NDTransferOpHelper<ConcreteOp>::doReplace()' in different namespace [-fpermissive]
While there
- De-templatify code that can use function_ref
- Make BoundCaptures usable when they're const
- Address post-submit review comment (static function into global namespace)
This replaces the select chain for edge-padding with an scf.if that
performs the memory operation when the index is in bounds and uses the
pad value when it's not. For transfer_write the same mechanism is used,
skipping the store when the index is out of bounds.
The integration test has a bunch of cases of how I believe this should
work.
Differential Revision: https://reviews.llvm.org/D87241
In this commit a new way of convolution ops lowering is introduced.
The conv op vectorization pass lowers linalg convolution ops
into vector contractions. This lowering is possible when conv op
is first tiled by 1 along specific dimensions which transforms
it into dot product between input and kernel subview memory buffers.
This pass converts such conv op into vector contraction and does
all necessary vector transfers that make it work.
Differential Revision: https://reviews.llvm.org/D86619
This was likely overlooked when ValueRange was first introduced. There is no
reason why StructuredIndexed needs specifically an ArrayRef so use ValueRange
for better type compatibility with the rest of the APIs.
Reviewed By: nicolasvasilache, mehdi_amini
Differential Revision: https://reviews.llvm.org/D87127
With `dynamic_tensor_from_elements` tensor values of dynamic size can be
created. The body of the operation essentially maps the index space to tensor
elements.
Declare SCF operations in the `scf` namespace to avoid name clash with the new
`std.yield` operation. Resolve ambiguities between `linalg/shape/std/scf.yield`
operations.
Differential Revision: https://reviews.llvm.org/D86276
Vector to SCF conversion still had issues due to the interaction with the natural alignment derived by the LLVM data layout. One traditional workaround is to allocate aligned. However, this does not always work for vector sizes that are non-powers of 2.
This revision implements a more portable mechanism where the intermediate allocation is always a memref of elemental vector type. AllocOp is extended to use the natural LLVM DataLayout alignment for non-scalar types, when the alignment is not specified in the first place.
An integration test is added that exercises the transfer to scf.for + scalar lowering with a 5x5 transposition.
Differential Revision: https://reviews.llvm.org/D87150
* Resolves todos from D87091.
* Also modifies PyConcreteAttribute to follow suite (should be useful for ElementsAttr and friends).
* Adds a test to ensure that the ShapedType base class functions as expected.
Differential Revision: https://reviews.llvm.org/D87208
Based on the PyType and PyConcreteType classes, this patch implements the bindings of Shaped Type, Tensor Type and MemRef Type subclasses.
The Tensor Type and MemRef Type are bound as ranked and unranked separately.
This patch adds the ***GetChecked C API to make sure the python side can get a valid type or a nullptr.
Shaped type is not a kind of standard types, it is the base class for vectors, memrefs and tensors, this patch binds the PyShapedType class as the base class of Vector Type, Tensor Type and MemRef Type subclasses.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D87091
These fields will be used to choose/influence patterns for
SPIR-V code generation.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D87106
This refactors the standalone-translate executable to use mlirTranslateMain() declared in Translation.h and further applies D87129.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D87131
Drops the include on InitAllDialects.h, as dialects are now initialized in the translation passes.
Differential Revision: https://reviews.llvm.org/D87129
Historically, the operations in the MLIR's LLVM dialect only checked that the
operand are of LLVM dialect type without more detailed constraints. This was
due to LLVM dialect types wrapping LLVM IR types and having clunky verification
methods. With the new first-class modeling, it is possible to define type
constraints similarly to other dialects and use them to enforce some
correctness rules in verifiers instead of having LLVM assert during translation
to LLVM IR. This hardening discovered several issues where MLIR was producing
LLVM dialect operations that cannot exist in LLVM IR.
Depends On D85900
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85901
When allowed, use 32-bit indices rather than 64-bit indices in the
SIMD computation of masks. This runs up to 2x and 4x faster on
a number of AVX2 and AVX512 microbenchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D87116
Its handling is similar to optional attributes, except for the
getter method.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D87055
This is the first bit from D73546. Primarily setting up the corresponding test. Will add more pretty printers in a separate revision.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D86937
This is allowing to build an OpPassManager from a StringRef instead of an
Identifier, which enables building pipelines without an MLIRContext.
An identifier is still cached on-demand on the OpPassManager for efficiency
during the IR traversal.
Sizes of tiles (subviews) are bigger by 1 than they should. Let's consider
1D convolution without batches or channels. Furthermore let m iterate over
the output and n over the kernel then input is accessed with m + n. In tiling
subview sizes for convolutions are computed by applying requested tile size
together with kernel size to the above mentioned expression thus let's say
for tile size of 2 the subview size is 2 + size(n), which is bigger by one
than it should since we move kernel only once. The problem behind it is that
range is not turned into closed interval before the composition. This commit
fixes the problem by turning ranges first into closed intervals by substracting
1 and after the composition back to half open by adding 1.
Differential Revision: https://reviews.llvm.org/D86638
This patch adds basic support for vectorization of uniform values to SuperVectorizer.
For now, only invariant values to the target vector loops are considered uniform. This
enables the vectorization of loops that use function arguments and external definitions
to the vector loops. We could extend uniform support in the future if we implement some
kind of divergence analysis algorithm.
Reviewed By: nicolasvasilache, aartbik
Differential Revision: https://reviews.llvm.org/D86756
This allows to defers the check for traits to the execution instead of forcing it on the pipeline creation.
In particular, this is making our pipeline creation tolerant to dialects not being loaded in the context yet.
Reviewed By: rriddle, GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D86915
Make use of affine memory op interfaces in AffineLoopInvariantCodeMotion so
that it can also work on affine.vector_load and affine.vector_store ops.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D86986
Make sure that memory ops that are defined inside the loop are registered
as such in 'defineOp'. In the test provided, the 'mulf' op was hoisted
outside the loop nest even when its 'affine.load' operand was not.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D86982
Instead of storing a StringRef, we keep an Identifier which otherwise requires a lock on the context to retrieve.
This will allow to get an Identifier for any registered Operation for "free".
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86994
In this PR, the users of BufferPlacement can configure
BufferAssginmentTypeConverter. These new configurations would give the user more
freedom in the process of converting function signature, and return and call
operation conversions.
These are the new features:
- Accepting callback functions for decomposing types (i.e. 1 to N type
conversion such as unpacking tuple types).
- Defining ResultConversionKind for specifying whether a function result
with a certain type should be appended to the function arguments list or
should be kept as function result. (Usage:
converter.setResultConversionKind<MemRefType>(AppendToArgumentList))
- Accepting callback functions for composing or decomposing values (i.e. N
to 1 and 1 to N value conversion).
Differential Revision: https://reviews.llvm.org/D85133
This reverts commit 94f5d24877 because
of failing the following tests:
MLIR :: Dialect/Linalg/tensors-to-buffers.mlir
MLIR :: Transforms/buffer-placement-preparation-allowed-memref-results.mlir
MLIR :: Transforms/buffer-placement-preparation.mlir
Added 128 byte alignment to alloc ops created in VectorToSCF pass.
128b alignment was already introduced to this pass but not to all alloc
ops. This commit changes that by adding 128b alignment to the remaining ops.
The point of specifying alignment is to prevent possible memory alignment errors
on weakly tested architectures.
Differential Revision: https://reviews.llvm.org/D86454
In this PR, the users of BufferPlacement can configure
BufferAssginmentTypeConverter. These new configurations would give the user more
freedom in the process of converting function signature, and return and call
operation conversions.
These are the new features:
- Accepting callback functions for decomposing types (i.e. 1 to N type
conversion such as unpacking tuple types).
- Defining ResultConversionKind for specifying whether a function result
with a certain type should be appended to the function arguments list or
should be kept as function result. (Usage:
converter.setResultConversionKind<MemRefType>(AppendToArgumentList))
- Accepting callback functions for composing or decomposing values (i.e. N
to 1 and 1 to N value conversion).
Differential Revision: https://reviews.llvm.org/D85133
Based on the PyType and PyConcreteType classes, this patch implements the bindings of Complex Type, Vector Type and Tuple Type subclasses.
For the convenience of type checking, this patch defines a `mlirTypeIsAIntegerOrFloat` function to check whether the given type is an integer or float type.
These three subclasses in this patch have similar binding strategy:
- The function pointer `isaFunction` points to `mlirTypeIsA***`.
- The `mlir***TypeGet` C API is bound with the `get_***` method in the python side.
- The Complex Type and Vector Type check whether the given type is an integer or float type.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86785
Unsigned and Signless attributes use uintN_t and signed attributes use intN_t, where N is the fixed width. The 1-bit variants use bool.
Differential Revision: https://reviews.llvm.org/D86739
This patch add the missing operands to the acc.loop operation. Only the device_type
information is not part of the operation for now.
Reviewed By: rriddle, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D86753
Clients who rely on the Context loading dialects from the global
registry can call `mlir::enableGlobalDialectRegistry(true);` before
creating an MLIRContext
Differential Revision: https://reviews.llvm.org/D86897
This adds some initial support for regions and does not support formatting the specific arguments of a region. For now this can be achieved by using a custom directive that formats the arguments and then parses the region.
Differential Revision: https://reviews.llvm.org/D86760
Symbol names are a special form of StringAttr that get treated specially in certain areas, such as formatting. This revision adds a special derived attr for them in ODS and adds support in the assemblyFormat for formatting them properly.
Differential Revision: https://reviews.llvm.org/D86759
This revision adds support for custom directives to the declarative assembly format. This allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. The custom directive is structured as follows:
```
custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`
```
`user-directive` is used as a suffix when this directive is used during printing and parsing. When parsing, `parseUserDirective` will be invoked. When printing, `printUserDirective` will be invoked. The first parameter to these methods must be a reference to either the OpAsmParser, or OpAsmPrinter. The type of rest of the parameters is dependent on the `Params` specified in the assembly format.
Differential Revision: https://reviews.llvm.org/D84719
Full diagnostic was:
warning: base class ‘class mlir::OptReductionBase<mlir::OptReductionPass>’ should be explicitly initialized in the copy constructor [-Wextra]
* This is just enough to create regions/blocks and iterate over them.
* Does not yet implement the preferred iteration strategy (python pseudo containers).
* Refinements need to come after doing basic mappings of operations and values so that the whole hierarchy can be used.
Differential Revision: https://reviews.llvm.org/D86683
The tensor_reshape op was only fusible only if it is a collapsing case. Now we
propagate the op to all the operands so there is a further chance to fuse it
with generic op. The pre-conditions are:
1) The producer is not an indexed_generic op.
2) All the shapes of the operands are the same.
3) All the indexing maps are identity.
4) All the loops are parallel loops.
5) The producer has a single user.
It is possible to fuse the ops if the producer is an indexed_generic op. We
still can compute the original indices. E.g., if the reshape op collapses the d0
and d1, we can use DimOp to get the width of d1, and calculate the index
`d0 * width + d1`. Then replace all the uses with it. However, this pattern is
not implemented in the patch.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86314
This is intended to ease the transition for client with a lot of
dependencies. It'll be removed in the coming weeks.
Differential Revision: https://reviews.llvm.org/D86755
The prior diff that introduced `addAffineIfOpDomain` missed appending
constraints from the ifOp domain. This revision fixes this problem.
Differential Revision: https://reviews.llvm.org/D86421
Adding a conversion pattern for the parallel Operation. This will
help the conversion of parallel operation with standard dialect to
parallel operation with llvm dialect. The type conversion of the block
arguments in a parallel region are controlled by the pattern for the
parallel Operation. Without this pattern, a parallel Operation with
block arguments cannot be converted from standard to LLVM dialect.
Other OpenMP operations without regions are marked as legal. When
translation of OpenMP operations with regions are added then patterns
for these operations can also be added.
Also uses all the standard to llvm patterns. Patterns of other dialects
can be added later if needed.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86273
When dealing with dialects that will results in function calls to
external libraries, it is important to be able to handle maps as some
dialects may require mapped data. Before this patch, the detection of
whether normalization can apply or not, operations are compared to an
explicit list of operations (`alloc`, `dealloc`, `return`) or to the
presence of specific operation interfaces (`AffineReadOpInterface`,
`AffineWriteOpInterface`, `AffineDMAStartOp`, or `AffineDMAWaitOp`).
This patch add a trait, `MemRefsNormalizable` to determine if an
operation can have its `memrefs` normalized.
This trait can be used in turn by dialects to assert that such
operations are compatible with normalization of `memrefs` with
nontrivial memory layout specification. An example is given in the
literal tests.
Differential Revision: https://reviews.llvm.org/D86236
This patch allows to pass the gpu module name to SPIR-V
module during conversion. This has many benefits as we can lookup
converted to SPIR-V kernel in the symbol table.
In order to avoid symbol conflicts, `"__spv__"` is added to the
gpu module name to form the new one.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86384
This patch introduces a hook to encode descriptor set
and binding number into `spv.globalVariable`'s symbolic name. This
allows to preserve this information, and at the same time legalize
the global variable for the conversion to LLVM dialect.
This is required for `mlir-spirv-cpu-runner` to convert kernel
arguments into LLVM.
Also, a couple of some nits added:
- removed unused comment
- changed to a capital letter in the comment
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86515
This makes OpPassManager more of a "container" of passes and not responsible to drive the execution.
As such we also make it constructible publicly, which will allow to build arbitrary pipeline decoupled from the execution. We'll make use of this facility to expose "dynamic pipeline" in the future.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86391
This patch updates the type conversion section of the documentation.
It includes the modelling of array strides and the mapping of the
naturally padded structs.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86674
This patch adds an optional name to SPIR-V module.
This will help with lowering from GPU dialect (so that we
can pass the kernel module name) and will be more naturally
aligned with `GPUModuleOp`/`ModuleOp`.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86386
As discussed in D86576, noundef attribute is removed from masked store/load/gather/scatter's
pointer operands.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86656
This patch adds NoUndef to Intrinsics.td.
The attribute is attached to llvm.assume's operand, because llvm.assume(undef)
is UB.
It is attached to pointer operands of several memory accessing intrinsics
as well.
This change makes ValueTracking::getGuaranteedNonPoisonOps' intrinsic check
unnecessary, so it is removed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86576
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.
An example of this representation is shown below:
```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite %root {
pdl.replace %root with (%inputOperand)
}
}
// May be represented in the interpreter dialect as follows:
module {
func @matcher(%arg0: !pdl.operation) {
pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
^bb1:
pdl_interp.return
^bb2:
pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
^bb3:
pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
^bb4:
%0 = pdl_interp.get_operand 0 of %arg0
pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
^bb5:
%1 = pdl_interp.get_result 0 of %arg0
pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
^bb6:
pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
}
module @rewriters {
func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
pdl_interp.replace %arg1 with(%arg0)
pdl_interp.return
}
}
}
```
Differential Revision: https://reviews.llvm.org/D84579
This assertion does not achieve what it meant to do originally, as it
would fire only when applied to an unregistered operation, which is a
fairly rare circumstance (it needs a dialect or context allowing
unregistered operation in the input in the first place).
Instead we relax it to only fire when it should have matched but didn't
because of the misconfiguration.
Differential Revision: https://reviews.llvm.org/D86588
Instead of using the TypeConverter infer the value of the alloca created based
on the init value. This will allow some ambiguous types like multidimensional
vectors to be converted correctly.
Differential Revision: https://reviews.llvm.org/D86582
Provides fast, generic way of setting a mask up to a certain
point. Potential use cases that may benefit are create_mask
and transfer_read/write operations in the vector dialect.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D86501
Based on the PyType and PyConcreteType classes, this patch implements the bindings of Index Type, Floating Point Type and None Type subclasses.
These three subclasses share the same binding strategy:
- The function pointer `isaFunction` points to `mlirTypeIsA***`.
- The `mlir***TypeGet` C API is bound with the `***Type` constructor in the python side.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86466
* Generic mlir.ir.Attribute class.
* First standard attribute (mlir.ir.StringAttr), following the same pattern as generic vs standard types.
* NamedAttribute class.
Differential Revision: https://reviews.llvm.org/D86250
This will allow out-of-tree translation to register the dialects they expect
to see in their input, on the model of getDependentDialects() for passes.
Differential Revision: https://reviews.llvm.org/D86409
This patch updates the SPIR-V to LLVM conversion manual.
Particularly, the following sections are added:
- `spv.EntryPoint`/`spv.ExecutionMode` handling
- Mapping for `spv.AccessChain`
- Change in allowed storage classes for `spv.globalVariable`
- Change of the runner section name
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86288
Binding MemRefs of f16 needs special handling as the type is not supported on
CPU. There was a bug in the type used.
Differential Revision: https://reviews.llvm.org/D86328
Refactor the way the reduction tree pass works in the MLIR Reduce tool by introducing a set of utilities that facilitate the implementation of new Reducer classes to be used in the passes.
This will allow for the fast implementation of general transformations to operate on all mlir modules as well as custom transformations for different dialects.
These utilities allow for the implementation of Reducer classes by simply defining a method that indexes the operations/blocks/regions to be transformed and a method to perform the deletion or transfomration based on the indexes.
Create the transformSpace class member in the ReductionNode class to keep track of the indexes that have already been transformed or deleted at a current level.
Delete the FunctionReducer class and replace it with the OpReducer class to reflect this new API while performing the same transformation and allowing the instantiation of a reduction pass for different types of operations at the module's highest hierarchichal level.
Modify the SinglePath Traversal method to reflect the use of the new API.
Reviewed: jpienaar
Differential Revision: https://reviews.llvm.org/D85591
Add a folder to the affine.parallel op so that loop bounds expressions are canonicalized.
Additionally, a new AffineParallelNormalizePass is added to adjust affine.parallel ops so that the lower bound is always 0 and the upper bound always represents a range with a step size of 1.
Differential Revision: https://reviews.llvm.org/D84998
Removed the Standard to LLVM conversion patterns that were previously
pulled in for testing purposes. This helps to separate the conversion
to LLVM dialect of the MLIR module with both SPIR-V and Standard
dialects in it (particularly helpful for SPIR-V cpu runner). Also,
tests were changed accordingly.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86285
This patch adds the capability to perform constraint redundancy checks for `FlatAffineConstraints` using `Simplex`, via a new member function `FlatAffineConstraints::removeRedundantConstraints`. The pre-existing redundancy detection algorithm runs a full rational emptiness check for each inequality separately for checking redundancy. Leveraging the existing `Simplex` infrastructure, in this patch we have an algorithm for redundancy checks that can check each constraint by performing pivots on the tableau, which provides an alternative to running Fourier-Motzkin elimination for each constraint separately.
Differential Revision: https://reviews.llvm.org/D84935
- This utility to merge a block anywhere into another one can help inline single
block regions into other blocks.
- Modified patterns test to use the new function.
Differential Revision: https://reviews.llvm.org/D86251
Add the unsigned complements to the existing FPToSI and SIToFP operations in the
standard dialect, with one-to-one lowerings to the corresponding LLVM operations.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85557
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.
PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.
An example pattern is shown below:
```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
// External input operand values are specified via `pdl.input` operations.
// Result types are constrainted via `pdl.type` operations.
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite(%root) {
pdl.replace %root with (%inputOperand)
}
}
```
This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ
Differential Revision: https://reviews.llvm.org/D84578
Provide C API for MLIR standard attributes. Since standard attributes live
under lib/IR in core MLIR, place the C APIs in the IR library as well (standard
ops will go in a separate library).
Affine map and integer set attributes are only exposed as placeholder types
with IsA support due to the lack of C APIs for the corresponding types.
Integer and floating point attribute APIs expecting APInt and APFloat are not
exposed pending decision on how to support APInt and APFloat.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86143
* The binding for Type is trivial and should be non-controversial.
* The way that I define the IntegerType should serve as a pattern for what I want to do next.
* I propose defining the rest of the standard types in this fashion and then generalizing for dialect types as necessary.
* Essentially, creating/accessing a concrete Type (vs interacting with the string form) is done by "casting" to the concrete type (i.e. IntegerType can be constructed with a Type and will throw if the cast is illegal).
* This deviates from some of our previous discussions about global objects but I think produces a usable API and we should go this way.
Differential Revision: https://reviews.llvm.org/D86179
If Memref has rank > 1 this pass emits N-1 loops around
TransferRead op and transforms the op itself to 1D read. Since vectors
must have static shape while memrefs don't the pass emits if condition
to prevent out of bounds accesses in case some memref dimension is smaller
than the corresponding dimension of targeted vector. This logic is fine
but authors forgot to apply `permutation_map` on loops upper bounds and
thus if condition compares induction variable to incorrect loop upper bound
(dimension of the memref) in case `permutation_map` is not identity map.
This commit aims to fix that.
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
The documentation needs a refresh now that "kinds" are no longer a concept. This revision also adds mentions to a few other new concepts, e.g. traits and interfaces.
Differential Revision: https://reviews.llvm.org/D86182
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
LinalgDistribution options to allow more general distributions.
Changing the signature of the callback to send in the ranges for all
the parallel loops and expect a vector with the Value to use for the
processor-id and number-of-processors for each of the parallel loops.
Differential Revision: https://reviews.llvm.org/D86095
There should be an equivalent std.floor op to std.ceil. This includes
matching lowerings for SPIRV, NVVM, ROCDL, and LLVM.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85940
Create a reduction pass that accepts an optimization pass as argument
and only replaces the golden module in the pipeline if the output of the
optimization pass is smaller than the input and still exhibits the
interesting behavior.
Add a -test-pass option to test individual passes in the MLIR Reduce
tool.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D84783
This patch adds more op/type conversion support
necessary for `spirv-runner`:
- EntryPoint/ExecutionMode: currently removed since we assume
having only one kernel function in the kernel module.
- StorageBuffer storage class is now supported. We are not
concerned with multithreading so this is fine for now.
- Type conversion enhanced, now regular offsets and strides
for structs and arrays are supported (based on
`VulkanLayoutUtils`).
- Support of `spc.AccessChain` that is modelled with GEP op
in LLVM dialect.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86109
When the operand to the linalg.tensor_reshape op is a splat constant,
the result can be replaced with a splat constant of the same value but
different type.
Differential Revision: https://reviews.llvm.org/D86117
Provide C API for MLIR standard types. Since standard types live under lib/IR
in core MLIR, place the C APIs in the IR library as well (standard ops will go
into a separate library). This also defines a placeholder for affine maps that
are necessary to construct a memref, but are not yet exposed to the C API.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86094
The function makes too strong assumption regarding parent FuncOp
which gets broken when FuncOp is first lowered to llvm function.
In this fix we generalize the assumption to allocation scope and
add assertion to produce user friendly message in case our assumption
is broken.
Differential Revision: https://reviews.llvm.org/D86086
This function is available on llvm::Type and has been used by some clients of
the LLVM dialect before the transition. Implement the MLIR counterpart.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D85847
- Add variants of getAnalysis() and friends that operate on a specific derived
operation types.
- Add OpPassManager::getAnalysis() to always call the base getAnalysis() with OpT.
- With this, an OperationPass can call getAnalysis<> using an analysis type that
is generic (works on Operation *) or specific to the OpT for the pass. Anything
else will fail to compile.
- Extend AnalysisManager unit test to test this, and add a new PassManager unit
test to test this functionality in the context of an OperationPass.
Differential Revision: https://reviews.llvm.org/D84897
According to the LLVM Language Reference, 'cmpxchg' accepts integer or pointer
types. Several MLIR tests were using it with floats as it appears possible to
programmatically construct and print such an instruction, but it cannot be
parsed back. Use integers instead.
Depends On D85899
Reviewed By: flaub, rriddle
Differential Revision: https://reviews.llvm.org/D85900
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652