reachable uses, but there still might be uses in dead blocks. Use the
standard solution of replacing all the uses with undef. This is
a rare case because it's very sensitive to phase ordering in SimplifyCFG.
llvm-svn: 127299
Yes, there are other types than i8* and GEPs on them can produce an add+multiply.
We don't consider that cheap enough to be speculatively executed.
llvm-svn: 126481
itself without going via a phi node then we could return false here in
spite of making a change. Also, tweak the comment because this method
can (and always could) return true without deleting the original phi node.
For example, if the phi node was used by a read-only invoke instruction
which is used by another phi node phi2 which is only used by and only uses
the invoke, then phi2 would be deleted but not the invoke instruction and
not the original phi node.
llvm-svn: 126129
should be that if the phi is used by a side-effect free instruction with
no uses then the phi and the instruction now get zapped (checked by the
unittest).
llvm-svn: 126124
test for that. With this change, test/CodeGen/X86/codegen-dce.ll no longer finds
any instructions to DCE, so delete the test.
Also renamed J and JP to I and IP in RecursivelyDeleteDeadPHINode.
llvm-svn: 126088
This is part of a futile attempt to not "break" bizzaro
code like this:
l1:
printf("l1: %p\n", &&l1);
++x;
if( x < 3 ) goto l1;
Previously we'd fold &&l1 to 1, which is fine per our semantics
but not helpful to the user.
llvm-svn: 125827
This makes the job of the later optzn passes easier, allowing the vast amount of
icmp transforms to chew on it.
We transform 840 switches in gcc.c, leading to a 16k byte shrink of the resulting
binary on i386-linux.
The testcase from README.txt now compiles into
decl %edi
cmpl $3, %edi
sbbl %eax, %eax
andl $1, %eax
ret
llvm-svn: 124724
checks enabled:
1) Use '<' to compare integers in a comparison function rather than '<='.
2) Use the uniqued set DefBlocks rather than Info.DefiningBlocks to initialize
the priority queue.
The speedup of scalarrepl on test-suite + SPEC2000 + SPEC2006 is a bit less, at
just under 16% rather than 17%.
llvm-svn: 123662
eliminating a potentially quadratic data structure, this also gives a 17%
speedup when running -scalarrepl on test-suite + SPEC2000 + SPEC2006. My initial
experiment gave a greater speedup around 25%, but I moved the dominator tree
level computation from dominator tree construction to PromoteMemToReg.
Since this approach to computing IDFs has a much lower overhead than the old
code using precomputed DFs, it is worth looking at using this new code for the
second scalarrepl pass as well.
llvm-svn: 123609
DT->changeImmediateDominator() trivially ignores identity updates, so there is
really no need for the uniqueing provided by SmallPtrSet.
I expect this to fix PR8954.
llvm-svn: 123286
phi nodes. It is called from MergeBlockIntoPredecessor which is
called from GVN, which claims to preserve these.
I'm skeptical that this is the actual problem behind PR8954, but
this is a stab in the right direction.
llvm-svn: 123222
they all ready do). This removes two dominator recomputations prior to isel,
which is a 1% improvement in total llc time for 403.gcc.
The only potentially suspect thing is making GCStrategy recompute dominators if
it used a custom lowering strategy.
llvm-svn: 123064
1. Take a flags argument instead of a bool. This makes
it more clear to the reader what it is used for.
2. Add a flag that says that "remapping a value not in the
map is ok".
3. Reimplement MapValue to share a bunch of code and be a lot
more efficient. For lookup failures, don't drop null values
into the map.
4. Using the new flag a bunch of code can vaporize in LinkModules
and LoopUnswitch, kill it.
No functionality change.
llvm-svn: 123058
in the PR, the pass could break LCSSA form when inserting preheaders. It probably
would be easy enough to fix this, but since currently we always go into LCSSA form
after running this pass, doing so is not urgent.
llvm-svn: 122695
visit instructions before their uses, since InstructionSimplify does a
better job in that case. All this prompted by Frits van Bommel.
llvm-svn: 122343
it could only be tested indirectly, via instcombine, gvn or some other
pass that makes use of InstructionSimplify, which means that testcases
had to be carefully contrived to dance around any other transformations
that that pass did.
llvm-svn: 122264
argument. The generated alloca has to have at least the alignment of the
byval, if not, the client may be making assumptions that the new alloca won't
satisfy.
llvm-svn: 122234
which is simpler than finding a place to insert in BB.
- Don't perform the 'if condition hoisting' xform on certain
i1 PHIs, as it interferes with switch formation.
This re-fixes "example 7", without breaking the world hopefully.
llvm-svn: 121764
first, it can kick in on blocks whose conditions have been
folded to a constant, even though one of the edges will be
trivially folded.
second, it doesn't clean up the "if diamond" that it just
eliminated away. This is a problem because other simplifycfg
xforms kick in depending on the order of block visitation,
causing pointless work.
llvm-svn: 121762
when simplifying, allowing them to be eagerly turned into switches. This
is the last step required to get "Example 7" from this blog post:
http://blog.regehr.org/archives/320
On X86, we now generate this machine code, which (to my eye) seems better
than the ICC generated code:
_crud: ## @crud
## BB#0: ## %entry
cmpb $33, %dil
jb LBB0_4
## BB#1: ## %switch.early.test
addb $-34, %dil
cmpb $58, %dil
ja LBB0_3
## BB#2: ## %switch.early.test
movzbl %dil, %eax
movabsq $288230376537592865, %rcx ## imm = 0x400000017001421
btq %rax, %rcx
jb LBB0_4
LBB0_3: ## %lor.rhs
xorl %eax, %eax
ret
LBB0_4: ## %lor.end
movl $1, %eax
ret
llvm-svn: 121690
location in simplifycfg. In the old days, SimplifyCFG was never run on
the entry block, so we had to scan over all preds of the BB passed into
simplifycfg to do this xform, now we can just check blocks ending with
a condbranch. This avoids a scan over all preds of every simplified
block, which should be a significant compile-time perf win on functions
with lots of edges. No functionality change.
llvm-svn: 121668
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
llvm-svn: 119727
hasConstantValue. I was leery of using SimplifyInstruction
while the IR was still in a half-baked state, which is the
reason for delaying the simplification until the IR is fully
cooked.
llvm-svn: 119494
it isn't unreachable and should not be zapped. The check for the entry block
was missing in one case: a block containing a unwind instruction. While there,
do some small cleanups: "M" is not a great name for a Function* (it would be
more appropriate for a Module*), change it to "Fn"; use Fn in more places.
llvm-svn: 117224
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
I'm sure it is harmless. Original commit message:
If PrototypeValue is erased in the middle of using the SSAUpdator
then the SSAUpdator may access freed memory. Instead, simply pass
in the type and name explicitly, which is all that was used anyway.
llvm-svn: 112810
fix: add a flag to MapValue and friends which indicates whether
any module-level mappings are being made. In the common case of
inlining, no module-level mappings are needed, so MapValue doesn't
need to examine non-function-local metadata, which can be very
expensive in the case of a large module with really deep metadata
(e.g. a large C++ program compiled with -g).
This flag is a little awkward; perhaps eventually it can be moved
into the ClonedCodeInfo class.
llvm-svn: 112190
which does the same thing. This eliminates redundant code and
handles MDNodes better. MDNode linking still doesn't fully
work yet though.
llvm-svn: 111941
that it avoids a lot of unnecessary cloning by avoiding remapping
MDNode cycles when none of the nodes in the cycle actually need to
be remapped. Also it uses the new temporary MDNode mechanism.
llvm-svn: 111922