When an external symbol is converted to an absolute it should be demoted to
local scope so that the symbol does not become a new definition within this
LinkGraph.
The crypto extension have several shorthand extensions that don't consist of any extra instructions.
Take `zk` for example, while the extension would imply `zkn, zkr, zkt`. The 3 extensions should also
combine back into `zk` to maintain the canonical order in isa strings.
This patch addresses the above.
Reviewed By: VincentWu
Differential Revision: https://reviews.llvm.org/D119530
Previously we initialed the work queue with MST roots based on NodeInfoMap which is an unordered map. This could cause a non-determinism. I'm fixing this by initializing the queue based on SortedEdges.
I don't see any performance move with this change. However this helps debugging.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D120670
Introduce a new attribute "function-inline-cost-multiplier" which
multiplies the inline cost of a call site (or all calls to a callee) by
the multiplier.
When processing the list of calls created by inlining, check each call
to see if the new call's callee is in the same SCC as the original
callee. If so, set the "function-inline-cost-multiplier" attribute of
the new call site to double the original call site's attribute value.
This does not happen when the original call site is intra-SCC.
This is an alternative to D120584, which marks the call sites as
noinline.
Hopefully fixes PR45253.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D121084
This ELF note is aarch64 and Android-specific. It specifies to the
dynamic loader that specific work should be scheduled to enable MTE
protection of stack and heap regions.
Current synthesis of the ".note.android.memtag" ELF note is done in the
Android build system. We'd like to move that to the compiler, and this
is the first step.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D119381
vslide1up/down have this flag set, but the value isn't a splat.
Rename for clarity.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D121037
When running llvm-bitcode-strip we want to remove the __LLVM
segment as well as the __bundle section when there are no other
sections in the segment.
Differential Revision: https://reviews.llvm.org/D120927
This patch extends ConstraintElimination to also remove dead variables
when removing a constraint. When a constraint is removed because it is
out of scope, all new variables added for this constraint can also be
removed.
This keeps the total size of the systems much smaller, because it
reduces the number of variables drastically.
It also fixes a bug where variables where removed incorrectly.
Fixes https://github.com/llvm/llvm-project/issues/54228
VectorBuilder wraps around an IRBuilder and
VectorBuilder::createVectorInstructions emits VP intrinsics as if they
were regular instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D105283
Currently, we hardly ever actually run SCEV verification, even in
tests with -verify-scev. This is because the NewPM LPM does not
verify SCEV. The reason for this is that SCEV verification can
actually change the result of subsequent SCEV queries, which means
that you see different transformations depending on whether
verification is enabled or not.
To allow verification in the LPM, this limits verification to
BECounts that have actually been cached. It will not calculate
new BECounts.
BackedgeTakenInfo::getExact() is still not entirely readonly,
it still calls getUMinFromMismatchedTypes(). But I hope that this
is not problematic in the same way. (This could be avoided by
performing the umin in the other SCEV instance, but this would
require duplicating some of the code.)
Differential Revision: https://reviews.llvm.org/D120551
We already look through memory to determine where a value that is stored
might pop up again (potential copies). This patch introduces the other
direction with similar logic. If a value is loaded, we can follow all
the accesses to the pointer (or better object) and try to determine what
value might have been stored.
With D106397 we used CFG reasoning to filter out writes that will not
interfere with a given load instruction. With this patch we use the
same logic (modulo the reversal in reachability check order) for store
instructions. As an example, we can now proof stores to shared memory
are dead if all the loads of the shared memory are not reachable from
them.
Currently in Clang, we have two types of builtins for fnmsub operation:
one for float/double vector, they'll be transformed into IR operations;
one for float/double scalar, they'll generate corresponding intrinsics.
But for the vector version of builtin, the 3 op chain may be recognized
as expensive by some passes (like early cse). We need some way to keep
the fnmsub form until code generation.
This patch introduces ppc.fnmsub.* intrinsic to unify four fnmsub
intrinsics.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D116015
This simply makes the function argument of the
`Attributor::checkForAllInstructions` helper explicit so one can iterate
over instructions in other functions.
The OpenMPIRBuilder has a bug. Specifically, suppose you have two nested openmp parallel regions (writing with MLIR for ease)
```
omp.parallel {
%a = ...
omp.parallel {
use(%a)
}
}
```
As OpenMP only permits pointer-like inputs, the builder will wrap all of the inputs into a stack allocation, and then pass this
allocation to the inner parallel. For example, we would want to get something like the following:
```
omp.parallel {
%a = ...
%tmp = alloc
store %tmp[] = %a
kmpc_fork(outlined, %tmp)
}
```
However, in practice, this is not what currently occurs in the context of nested parallel regions. Specifically to the OpenMPIRBuilder,
the entirety of the function (at the LLVM level) is currently inlined with blocks marking the corresponding start and end of each
region.
```
entry:
...
parallel1:
%a = ...
...
parallel2:
use(%a)
...
endparallel2:
...
endparallel1:
...
```
When the allocation is inserted, it presently inserted into the parent of the entire function (e.g. entry) rather than the parent
allocation scope to the function being outlined. If we were outlining parallel2, the corresponding alloca location would be parallel1.
This causes a variety of bugs, including https://github.com/llvm/llvm-project/issues/54165 as one example.
This PR allows the stack allocation to be created at the correct allocation block, and thus remedies such issues.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D121061
This is the second step in obviating two columns about allocation
functions in MemoryBuiltins.cpp.
Differential Revision: https://reviews.llvm.org/D119583
This will let us start moving away from hard-coded attributes in
MemoryBuiltins.cpp and put the knowledge about various attribute
functions in the compilers that emit those calls where it probably
belongs.
Differential Revision: https://reviews.llvm.org/D117921
This patch filters out callstack frames which can't be symbolized or if
the frames belong to the runtime. Symbolization may not be possible if
debug information is unavailable or if the addresses are from a shared
library. For now we only support optimization of the main binary which
is statically linked to the compiler runtime.
Differential Revision: https://reviews.llvm.org/D120860
Prior to this change LLVM would happily elide a call to any allocation
function and a call to any free function operating on the same unused
pointer. This can cause problems in some obscure cases, for example if
the body of operator::new can be inlined but the body of
operator::delete can't, as in this example from jyknight:
#include <stdlib.h>
#include <stdio.h>
int allocs = 0;
void *operator new(size_t n) {
allocs++;
void *mem = malloc(n);
if (!mem) abort();
return mem;
}
__attribute__((noinline)) void operator delete(void *mem) noexcept {
allocs--;
free(mem);
}
void deleteit(int*i) { delete i; }
int main() {
int*i = new int;
deleteit(i);
if (allocs != 0)
printf("MEMORY LEAK! allocs: %d\n", allocs);
}
This patch addresses the issue by introducing the concept of an
allocator function family and uses it to make sure that alloc/free
function pairs are only removed if they're in the same family.
Differential Revision: https://reviews.llvm.org/D117356
In addressing the buffer ownership API, I discovered a rogue member
function that returned by value rather than by reference. It clearly
intended to return by reference, but because the copy ctor wasn't
deleted this wasn't caught.
It is not necessary to make this a move-only type, although that would
be an alternative.
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D120901
This commit adds support for processing tablegen include files, and importing
various information from ODS. This includes operations, attribute+type constraints,
attribute/operation/type interfaces, etc. This will allow for much more robust tooling,
and also allows for referencing ODS constructs directly within PDLL (imported interfaces
can be used as constraints, operation result names can be used for member access, etc).
Differential Revision: https://reviews.llvm.org/D119900
This commit adds a new `TableGenParseFile` entry point for tablegen
that parses an input buffer and invokes a callback function with
a record keeper (notably without an output buffer). This kind of entry
point is very useful for tablegen consuming tools that don't create
output, and want invoke tablegen multiple times. The current way
that we interact with tablegen is via relative includes to
TGParser(not great).
Differential Revision: https://reviews.llvm.org/D119899
Currently, symbolization of stack frames occurs on demand when the instrprof writer
iterates over all the records in the raw memprof reader. With this
change we symbolize and cache the frames immediately after reading the
raw profiles. For a large internal binary this results in a runtime
reduction of ~50% (2m -> 48s) when merging a memprof raw profile with a
raw instr profile to generate an indexed profile. This change also makes
it simpler in the future to generate additional calling context
metadata to attach to each memprof record.
Differential Revision: https://reviews.llvm.org/D120430
The similar getICmpCode and getPredForICmpCode are already there.
This moves FP for consistency.
I think InstCombine is currently the only user of both.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D120754
`ArgInfo` is reduced to only contain a pair of {formal,actual} values.
The specialized function `Fn` and the `Partial` flag are redundant in
this structure. The `Gain` is moved to a new struct `SpecializationInfo`.
The value mappings created by cloneCandidateFunction() are being used
by rewriteCallSites() for matching the formal arguments of recursive
functions.
The list of specializations is passed by reference to calculateGains()
instead of being returned by value.
The `IsPartial` flag is removed from isArgumentInteresting() and
getPossibleConstants() as it's no longer used anywhere in the code.
Differential Revision: https://reviews.llvm.org/D120753
VectorBuilder wraps around an IRBuilder and
VectorBuilder::createVectorInstructions emits VP intrinsics as if they
were regular instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D105283
A using directive in a header pollutes the namespace of all files which
include that header. It seems this snuck in in D115764 by moving some
code from a cpp file.
This aids debugging when working with possibly broken files,
instead of just flat out erroring out without telling what's wrong.
Differential Revision: https://reviews.llvm.org/D120679
This wraps up from D119053. The 2 headers are moved as described,
fixed file headers and include guards, updated all files where the old
paths were detected (simple grep through the repo), and `clang-format`-ed it all.
Differential Revision: https://reviews.llvm.org/D119876
Without this, EPCIndirectionUtils::getResolverBlockAddr (and lazy compilation
via EPC) won't work.
No test case: lli is still using LocalLazyCallThroughManager. I'll revisit this
soon when I look at adding lazy compilation support to the ORC runtime.
Default the moves and delete the copies for TempFile, matching TempDir
and TempLink, and add tests for all of them to confirm that the
destructor is not harmful after it has been moved from.
Differential Revision: https://reviews.llvm.org/D120691