class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
extract the appropriate argument from the argument pack (based on the
current substitution index, of course). Simple instantiation of pack
expansions involving non-type template parameter packs now works.
llvm-svn: 122532
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
classes, since we only warn (not error) on offsetof() for non-POD
types. We store the base path within the OffsetOfExpr itself, then
evaluate the offsets within the constant evaluator.
llvm-svn: 102571
Amadini.
This change introduces a new expression node type, OffsetOfExpr, that
describes __builtin_offsetof. Previously, __builtin_offsetof was
implemented using a unary operator whose subexpression involved
various synthesized array-subscript and member-reference expressions,
which was ugly and made it very hard to instantiate as a
template. OffsetOfExpr represents the AST more faithfully, with proper
type source information and a more compact representation.
OffsetOfExpr also has support for dependent __builtin_offsetof
expressions; it can be value-dependent, but will never be
type-dependent (like sizeof or alignof). This commit introduces
template instantiation for __builtin_offsetof as well.
There are two major caveats to this patch:
1) CodeGen cannot handle the case where __builtin_offsetof is not a
constant expression, so it produces an error. So, to avoid
regressing in C, we retain the old UnaryOperator-based
__builtin_offsetof implementation in C while using the shiny new
OffsetOfExpr implementation in C++. The old implementation can go
away once we have proper CodeGen support for this case, which we
expect won't cause much trouble in C++.
2) __builtin_offsetof doesn't work well with non-POD class types,
particularly when the designated field is found within a base
class. I will address this in a subsequent patch.
Fixes PR5880 and a bunch of assertions when building Boost.Python
tests.
llvm-svn: 102542
implicit member access to a specific declaration, go ahead and create
it as a DeclRefExpr or a MemberExpr (with implicit CXXThisExpr base) as
appropriate. Otherwise, create an UnresolvedMemberExpr or
DependentScopeMemberExpr with a null base expression.
By representing implicit accesses directly in the AST, we get the ability
to correctly delay the decision about whether it's actually an instance
member access or not until resolution is complete. This permits us
to correctly avoid diagnosing the 'problem' of 'MyType::foo()'
where the relationship to the type isn't really known until instantiation.
llvm-svn: 90266
Create a new UnresolvedMemberExpr for these lookups. Assorted hackery
around qualified member expressions; this will all go away when we
implement the correct (i.e. extremely delayed) implicit-member semantics.
llvm-svn: 90161
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).
Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting
Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.
llvm-svn: 89817
DependentScopeDeclRefExpr support storing templateids. Unite the common
code paths between ActOnDeclarationNameExpr and ActOnTemplateIdExpr.
This gets us to a point where we don't need to store function templates in
the AST using TemplateNames, which is critical to ripping out OverloadedFunction.
Also resolves a few FIXMEs.
llvm-svn: 89785
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
appropriate lookup and simply can't resolve the referrent yet, and
"dependent scope" expressions, where we can't do the lookup yet because the
entity we need to look into is a dependent type.
llvm-svn: 89402