Summary:
This adds the ISD opcode and a DAG combine to create it. There are
probably some places where we can directly create it, but I'll
leave that for future work.
This updates all of the isel patterns to look for this new node.
I had to add a few additional isel patterns for aligned extloads
which we should probably fix with a DAG combine or something. This
does mean that the broadcast load folding for avx512 can no
longer match a broadcasted aligned extload.
There's still some work to do here for combining a broadcast of
a broadcast_load. We also need to improve extractelement or
demanded vector elements of a broadcast_load. I'll try to get
those done before I submit this patch.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68198
llvm-svn: 373349
Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits
Differential Revision: https://reviews.llvm.org/D46179
llvm-svn: 339650
Ensure we test on 32-bit and 64-bit targets, and strip -mcpu usage.
Part of ongoing work to ensure we test all intrinsic style tests on 32 and 64 bit targets where possible.
llvm-svn: 333843
We have unmasked intrinsics now and wrap them with a select. This is a net reduction of 36 intrinsics from before the unmasked intrinsics were added.
llvm-svn: 333388
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
* CFI instructions do not affect code generation (they are not counted as
instructions when tail duplicating or tail merging)
* Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Added CFIInstrInserter pass:
* analyzes each basic block to determine cfa offset and register are valid
at its entry and exit
* verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
* inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D42848
llvm-svn: 330706
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44785
llvm-svn: 330322
The 128/256-bit versions were no longer used by clang. It uses the legacy SSE/AVX2 version and a select. The 512-bit was changed to the same for consistency.
llvm-svn: 329774
The 128 and 256 bit versions were already not used by clang. This adds an equivalent unmasked 512 bit version. Then autoupgrades all sizes to use unmasked intrinsics plus select.
llvm-svn: 325559
We swapped the operands and used setle, but I don't see any reason to do that. I think this is a holdover from SSE where we swap and the invert to use pcmpgt. But with AVX512 we don't want an invert so we won't use pcmpgt. So there's no need to swap.
llvm-svn: 325527
This reduces the number of transitions between k-registers and GPRs, reducing the number of instructions.
There's still some room for improvement to remove more transitions, but this is a good start.
llvm-svn: 324184
Summary:
This change extends MachineCopyPropagation to do COPY source forwarding
and adds an additional run of the pass to the default pass pipeline just
after register allocation.
This version of this patch uses the newly added
MachineOperand::isRenamable bit to avoid forwarding registers is such a
way as to violate constraints that aren't captured in the
Machine IR (e.g. ABI or ISA constraints).
This change is a continuation of the work started in D30751.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa, tstellar
Subscribers: tpr, mgorny, mcrosier, nhaehnle, nemanjai, jyknight, hfinkel, arsenm, inouehrs, eraman, sdardis, guyblank, fedor.sergeev, aheejin, dschuff, jfb, myatsina, llvm-commits
Differential Revision: https://reviews.llvm.org/D41835
llvm-svn: 323991
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
The existing code was already doing something very similar to subvector insertion so this allows us to remove the nearly duplicate code.
This patch is a little larger than it should be due to differences between the DQI handling between the two today.
llvm-svn: 323212
Summary:
If we can match as a zero extend there's no need to flip the order to get an encoding benefit. As movzx is 3 bytes with independent source/dest registers. The shortest 'and' we could make is also 3 bytes unless we get lucky in the register allocator and its on AL/AX/EAX which have a 2 byte encoding.
This patch was more impressive before r322957 went in. It removed some of the same Ands that got deleted by that patch.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42313
llvm-svn: 323175
Summary: This patch changes the kunpck intrinsic autoupgrade to use vXi1 shufflevector operations to perform vector extracts and concats. This more closely matches the definition of the kunpck instructions. Currently we rely on a DAG combine to turn the scalar shift/and/or code into a concat vectors operation. By doing it in the IR we get this for free.
Reviewers: spatel, RKSimon, zvi, jina.nahias
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42018
llvm-svn: 322462
I had to drop fast-isel-abort from a test because we can't fast isel some of the mask stuff. When we used intrinsics we implicitly fell back to SelectionDAG for the intrinsic call without triggering the abort error. But with native IR that doesn't happen the same way.
llvm-svn: 322050
Allow SimplifyDemandedBits to use TargetLoweringOpt::computeKnownBits to look through bitcasts. This can help simplifying in some cases where bitcasts of constants generated during or after legalization can't be folded away, and thus didn't get picked up by SimplifyDemandedBits. This fixes PR34620, where a redundant pand created during legalization from lowering and lshr <16xi8> wasn't being simplified due to the presence of a bitcasted build_vector as an operand.
Committed on the behalf of @sameconrad (Sam Conrad)
Differential Revision: https://reviews.llvm.org/D41643
llvm-svn: 321969
We previously only supported inserting to the LSB or MSB where it was easy to zero to perform an OR to insert.
This change effectively extracts the old value and the new value, xors them together and then xors that single bit with the correct location in the original vector. This will cancel out the old value in the first xor leaving the new value in the position.
The way I've implemented this uses 3 shifts and two xors and uses an additional register. We can avoid the additional register at the cost of another shift.
llvm-svn: 320120
This patch, together with a matching clang patch (https://reviews.llvm.org/D39719), implements the lowering of X86 kunpack intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D39720
Change-Id: I4088d9428478f9457f6afddc90bd3d66b3daf0a1
llvm-svn: 319778
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
Remove builtins from llvm and add AutoUpgrade support.
Also add fast-isel tests for the TEST and TESTN instructions.
Differential Revision: https://reviews.llvm.org/D38736
llvm-svn: 318036
This reverts r317579, originally committed as r317100.
There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.
When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
int a, c, d, e, f, g, h, i, j, k, l, m;
void n(int o, int *b) {
if (g)
f = 0;
for (; f < o; f++) {
m = a;
if (l > j * k > i)
j = i = k = d;
h = b[c] - e;
}
}
We get assembly that looks like this:
; BB#1: ; %if.then
Lloh3:
adrp x9, _f@GOTPAGE
Lloh4:
ldr x9, [x9, _f@GOTPAGEOFF]
mov w8, wzr
Lloh5:
str wzr, [x9]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.lt LBB0_3
b LBB0_7
LBB0_2: ; %entry.if.end_crit_edge
Lloh6:
adrp x8, _f@GOTPAGE
Lloh7:
ldr x8, [x8, _f@GOTPAGEOFF]
Lloh8:
ldr w8, [x8]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.ge LBB0_7
LBB0_3: ; %for.body.lr.ph
Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.
llvm-svn: 317726
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().
Original r317100 message:
"Correct dwarf unwind information in function epilogue for X86"
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
llvm-svn: 317579
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D35844
llvm-svn: 317100
Summary:
This suppresses the generation of .Lcfi labels in our textual assembler.
It was annoying that this generated cascading .Lcfi labels:
llc foo.ll -o - | llvm-mc | llvm-mc
After three trips through MCAsmStreamer, we'd have three labels in the
output when none are necessary. We should only bother creating the
labels and frame data when making a real object file.
This supercedes D38605, which moved the entire .seh_ implementation into
MCObjectStreamer.
This has the advantage that we do more checking when emitting textual
assembly, as a minor efficiency cost. Outputting textual assembly is not
performance critical, so this shouldn't matter.
Reviewers: majnemer, MatzeB
Subscribers: qcolombet, nemanjai, javed.absar, eraman, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D38638
llvm-svn: 315259
Issues addressed since original review:
- Avoid bug in regalloc greedy/machine verifier when forwarding to use
in an instruction that re-defines the same virtual register.
- Fixed bug when forwarding to use in EarlyClobber instruction slot.
- Fixed incorrect forwarding to register definitions that showed up in
explicit_uses() iterator (e.g. in INLINEASM).
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 314729
NFC.
Updated 8 regression tests to use -mattr instead of -mcpu flag as follows:
-mcpu=knl --> -mattr=+avx512f
-mcpu=skx --> -mattr=+avx512f,+avx512bw,+avx512vl,+avx512dq
The updates are as part of the preparation of a large commit to add all instruction scheduling for the SKX target.
Reviewers: delena, zvi, RKSimon
Differential Revision: https://reviews.llvm.org/D38222
Change-Id: I2381c9b5bb75ecacfca017243c22d054f6eddd14
llvm-svn: 314306
The (non-)obvious win comes from saving 3 bytes by using the 0x83 'and' opcode variant instead of 0x81.
There are also better improvements based on known-bits that allow us to eliminate the mask entirely.
As noted, this could be extended. There are potentially other wins from always shifting first, but doing
that reveals a tangle of problems in other pattern matching. We do this transform generically in
instcombine, but we often have icmp IR that doesn't match that pattern, so we must account for this
in the backend.
Differential Revision: https://reviews.llvm.org/D38181
llvm-svn: 314023
Summary:
Subregister liveness tracking is not implemented for X86 backend, so
sometimes the whole super register is said to be live, when only a
subregister is really live. That might happen if the def and the use
are located in different MBBs, see added fixup-bw-isnt.mir test.
However, using knowledge of the specific instructions handled by the
bw-fixup-pass we can get more precise liveness information which this
change does.
Reviewers: MatzeB, DavidKreitzer, ab, andrew.w.kaylor, craig.topper
Reviewed By: craig.topper
Subscribers: n.bozhenov, myatsina, llvm-commits, hiraditya
Patch by Andrei Elovikov <andrei.elovikov@intel.com>
Differential Revision: https://reviews.llvm.org/D37559
llvm-svn: 313524