Previously the attributes were emitted only for function definitions.
Patch adds emission of the attributes for function declarations.
llvm-svn: 320826
Summary:
The -fxray-always-emit-customevents flag instructs clang to always emit
the LLVM IR for calls to the `__xray_customevent(...)` built-in
function. The default behaviour currently respects whether the function
has an `[[clang::xray_never_instrument]]` attribute, and thus not lower
the appropriate IR code for the custom event built-in.
This change allows users calling through to the
`__xray_customevent(...)` built-in to always see those calls lowered to
the corresponding LLVM IR to lay down instrumentation points for these
custom event calls.
Using this flag enables us to emit even just the user-provided custom
events even while never instrumenting the start/end of the function
where they appear. This is useful in cases where "phase markers" using
__xray_customevent(...) can have very few instructions, must never be
instrumented when entered/exited.
Reviewers: rnk, dblaikie, kpw
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D40601
llvm-svn: 319388
This is an instrumentation flag that's similar to
-finstrument-functions, but it only inserts calls on function entry, the
calls are inserted post-inlining, and they don't take any arugments.
This is intended for users who want to instrument function entry with
minimal overhead.
(-pg would be another alternative, but forces frame pointer emission and
affects link flags, so is probably best left alone to be used for
generating gcov data.)
Differential revision: https://reviews.llvm.org/D40276
llvm-svn: 318785
This updates -mcount to use the new attribute names (LLVM r318195), and
switches over -finstrument-functions to also use these attributes rather
than inserting instrumentation in the frontend.
It also adds a new flag, -finstrument-functions-after-inlining, which
makes the cygprofile instrumentation get inserted after inlining rather
than before.
Differential Revision: https://reviews.llvm.org/D39331
llvm-svn: 318199
Summary:
We don't want to store cleanup dest slot saved into the coroutine frame (as some of the cleanup code may
access them after coroutine frame destroyed).
This is an alternative to https://reviews.llvm.org/D37093
It is possible to do this for all functions, but, cursory check showed that in -O0, we get slightly longer function (by 1-3 instructions), thus, we are only limiting cleanup.dest.slot elimination to coroutines.
Reviewers: rjmccall, hfinkel, eric_niebler
Reviewed By: eric_niebler
Subscribers: EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D39768
llvm-svn: 317981
This patch fixes various places in clang to propagate may-alias
TBAA access descriptors during construction of lvalues, thus
eliminating the need for the LValueBaseInfo::MayAlias flag.
This is part of D38126 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D39008
llvm-svn: 316988
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
The function sanitizer only checks indirect calls through function
pointers. This excludes all non-static member functions (constructor
calls, calls through thunks, etc. all use a separate code path). Don't
emit function signatures for functions that won't be checked.
Apart from cutting down on code size, this should fix a regression on
Linux caused by r313096. For context, see the mailing list discussion:
r313096 - [ubsan] Function Sanitizer: Don't require writable text segments
Testing: check-clang, check-ubsan
Differential Revision: https://reviews.llvm.org/D38913
llvm-svn: 315786
This patch enables explicit generation of TBAA information in all
cases where LValue base info is propagated or constructed in
non-trivial ways. Eventually, we will consider each of these
cases to make sure the TBAA information is correct and not too
conservative. For now, we just fall back to generating TBAA info
from the access type.
This patch should not bring in any functional changes.
This is part of D38126 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38733
llvm-svn: 315575
This patch is an attempt to clarify and simplify generation and
propagation of TBAA information. The idea is to pack all values
that describe a memory access, namely, base type, access type and
offset, into a single structure. This is supposed to make further
changes, such as adding support for unions and array members,
easier to prepare and review.
DecorateInstructionWithTBAA() is no more responsible for
converting types to tags. These implicit conversions not only
complicate reading the code, but also suggest assigning scalar
access tags while we generally prefer full-size struct-path tags.
TBAAPathTag is replaced with TBAAAccessInfo; the latter is now
the type of the keys of the cache map that translates access
descriptors to metadata nodes.
Fixed a bug with writing to a wrong map in
getTBAABaseTypeMetadata() (former getTBAAStructTypeInfo()).
We now check for valid base access types every time we
dereference a field. The original code only checks the top-level
base type. See isValidBaseType() / isTBAAPathStruct() calls.
Some entities have been renamed to sound more adequate and less
confusing/misleading in presence of path-aware TBAA information.
Now we do not lookup twice for the same cache entry in
getAccessTagInfo().
Refined relevant comments and descriptions.
Differential Revision: https://reviews.llvm.org/D37826
llvm-svn: 315048
This patch makes it possible to produce access tags in a uniform
manner regardless whether the resulting tag will be a scalar or a
struct-path one. getAccessTagInfo() now takes care of the actual
translation of access descriptors to tags and can handle all
kinds of accesses. Facilities that specific to scalar accesses
are eliminated.
Some more details:
* DecorateInstructionWithTBAA() is not responsible for conversion
of types to access tags anymore. Instead, it takes an access
descriptor (TBAAAccessInfo) and generates corresponding access
tag from it.
* getTBAAInfoForVTablePtr() reworked to
getTBAAVTablePtrAccessInfo() that now returns the
virtual-pointer access descriptor and not the virtual-point
type metadata.
* Added function getTBAAMayAliasAccessInfo() that returns the
descriptor for may-alias accesses.
* getTBAAStructTagInfo() renamed to getTBAAAccessTagInfo() as now
it is the only way to generate access tag by a given access
descriptor. It is capable of producing both scalar and
struct-path tags, depending on options and availability of the
base access type. getTBAAScalarTagInfo() and its cache
ScalarTagMetadataCache are eliminated.
* Now that we do not need to care about whether the resulting
access tag should be a scalar or struct-path one,
getTBAAStructTypeInfo() is renamed to getBaseTypeInfo().
* Added function getTBAAAccessInfo() that constructs access
descriptor by a given QualType access type.
This is part of D37826 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38503
llvm-svn: 314977
This patch fixes misleading names of entities related to getting,
setting and generation of TBAA access type descriptors.
This is effectively an attempt to provide a review for D37826 by
breaking it into smaller pieces.
Differential Revision: https://reviews.llvm.org/D38404
llvm-svn: 314657
Summary:
This is the follow-up patch to D37924.
This change refactors clang to use the the newly added section headers
in SpecialCaseList to specify which sanitizers blacklists entries
should apply to, like so:
[cfi-vcall]
fun:*bad_vcall*
[cfi-derived-cast|cfi-unrelated-cast]
fun:*bad_cast*
The SanitizerSpecialCaseList class has been added to allow querying by
SanitizerMask, and SanitizerBlacklist and its downstream users have been
updated to provide that information. Old blacklists not using sections
will continue to function identically since the blacklist entries will
be placed into a '[*]' section by default matching against all
sanitizers.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis
Subscribers: dberris, cfe-commits, mgorny
Differential Revision: https://reviews.llvm.org/D37925
llvm-svn: 314171
This change will make it possible to use -fsanitize=function on Darwin and
possibly on other platforms. It fixes an issue with the way RTTI is stored into
function prologue data.
On Darwin, addresses stored in prologue data can't require run-time fixups and
must be PC-relative. Run-time fixups are undesirable because they necessitate
writable text segments, which can lead to security issues. And absolute
addresses are undesirable because they break PIE mode.
The fix is to create a private global which points to the RTTI, and then to
encode a PC-relative reference to the global into prologue data.
Differential Revision: https://reviews.llvm.org/D37597
llvm-svn: 313096
Summary: With accurate sample profile, we can do more aggressive size optimization. For some size-critical application, this can reduce the text size by 20%
Reviewers: davidxl, rsmith
Reviewed By: davidxl, rsmith
Subscribers: mehdi_amini, eraman, sanjoy, cfe-commits
Differential Revision: https://reviews.llvm.org/D37091
llvm-svn: 311707
Do not sanitize the 'this' pointer of a member call operator for a lambda with
no capture-default, since that call operator can legitimately be called with a
null this pointer from the static invoker function. Any actual call with a null
this pointer should still be caught in the caller (if it is being sanitized).
This reinstates r311589 (reverted in r311680) with the above fix.
llvm-svn: 311695
We don't need special handling in CodeGenFunction::GenerateCode for
lambda block pointer conversion operators anymore. The conversion
operator emission code immediately calls back to the generic
EmitFunctionBody.
Rename EmitLambdaStaticInvokeFunction to EmitLambdaStaticInvokeBody for
better consistency with the other Emit*Body methods.
I'm preparing to do something about PR28299, which touches this code.
llvm-svn: 310145
Summary:
Previously, STL allocators were blacklisted in compiler_rt's
cfi_blacklist.txt because they mandated a cast from void* to T* before
object initialization completed. This change moves that logic into the
front end because C++ name mangling supports a substitution compression
mechanism for symbols that makes it difficult to blacklist the mangled
symbol for allocate() using a regular expression.
Motivated by crbug.com/751385.
Reviewers: pcc, kcc
Reviewed By: pcc
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D36294
llvm-svn: 310097
This patch makes ubsan's nonnull return value diagnostics more precise,
which makes the diagnostics more useful when there are multiple return
statements in a function. Example:
1 |__attribute__((returns_nonnull)) char *foo() {
2 | if (...) {
3 | return expr_which_might_evaluate_to_null();
4 | } else {
5 | return another_expr_which_might_evaluate_to_null();
6 | }
7 |} // <- The current diagnostic always points here!
runtime error: Null returned from Line 7, Column 2!
With this patch, the diagnostic would point to either Line 3, Column 5
or Line 5, Column 5.
This is done by emitting source location metadata for each return
statement in a sanitized function. The runtime is passed a pointer to
the appropriate metadata so that it can prepare and deduplicate reports.
Compiler-rt patch (with more tests): https://reviews.llvm.org/D34298
Differential Revision: https://reviews.llvm.org/D34299
llvm-svn: 306163
Summary:
Disable generation of counting-function attribute if no_instrument_function
attribute is present in function.
Interaction between -pg and no_instrument_function is the desired behavior
and matches gcc as well.
This is required for fixing a crash in Linux kernel when function tracing
is enabled.
Fixes PR33515.
Reviewers: hfinkel, rengolin, srhines, hans
Reviewed By: hfinkel
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D34357
llvm-svn: 305728
Summary:
If the first parameter of the function is the ImplicitParamDecl, codegen
automatically marks it as an implicit argument with `this` or `self`
pointer. Added internal kind of the ImplicitParamDecl to separate
'this', 'self', 'vtt' and other implicit parameters from other kind of
parameters.
Reviewers: rjmccall, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33735
llvm-svn: 305075
`GenerateVarArgsThunk` in `CGVTables` clones a function before the frontend
is done emitting the compilation unit. Because of the way that DIBuilder
works, this means that the attached subprogram had incomplete (temporary)
metadata. Cloning such metadata is semantically disallowed, but happened
to work anyway due to bugs in the cloning logic. rL304226 attempted to fix
up that logic, but in the process exposed the incorrect API use here and
had to be reverted. To be able to fix this, I added a new method to
DIBuilder in rL304467, to allow finalizing a subprogram independently
of the entire compilation unit. Use that here, in preparation of re-applying
rL304226.
Reviewers: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D33705
llvm-svn: 304470
The functions creating LValues propagated information about alignment
source. Extend the propagated data to also include information about
possible unrestricted aliasing. A new class LValueBaseInfo will
contain both AlignmentSource and MayAlias info.
This patch should not introduce any functional changes.
Differential Revision: https://reviews.llvm.org/D33284
llvm-svn: 303358
This patch teaches ubsan to insert an alignment check for the 'this'
pointer at the start of each method/lambda. This allows clang to emit
significantly fewer alignment checks overall, because if 'this' is
aligned, so are its fields.
This is essentially the same thing r295515 does, but for the alignment
check instead of the null check. One difference is that we keep the
alignment checks on member expressions where the base is a DeclRefExpr.
There's an opportunity to diagnose unaligned accesses in this situation
(as pointed out by Eli, see PR32630).
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
Along with the patch from D30285, this roughly halves the amount of
alignment checks we emit when compiling X86FastISel.cpp. Here are the
numbers from patched/unpatched clangs based on r298160.
------------------------------------------
| Setup | # of alignment checks |
------------------------------------------
| unpatched, -O0 | 24326 |
| patched, -O0 | 12717 | (-47.7%)
------------------------------------------
Differential Revision: https://reviews.llvm.org/D30283
llvm-svn: 300370
Summary:
"kernel_arg_type_qual" metadata should contain const/volatile/restrict
tags only for pointer types to match the corresponding requirement of
the OpenCL specification.
OpenCL 2.0 spec 5.9.3 Kernel Object Queries:
CL_KERNEL_ARG_TYPE_VOLATILE is returned if the argument is a pointer
and the referenced type is declared with the volatile qualifier.
[...]
Similarly, CL_KERNEL_ARG_TYPE_CONST is returned if the argument is a
pointer and the referenced type is declared with the restrict or const
qualifier.
[...]
CL_KERNEL_ARG_TYPE_RESTRICT will be returned if the pointer type is
marked restrict.
Reviewers: Anastasia, cfe-commits
Reviewed By: Anastasia
Subscribers: bader, yaxunl
Differential Revision: https://reviews.llvm.org/D31321
llvm-svn: 299192
Since r299174 use after scope checking is on by default. Even though
msan doesn't check for use after scope it gets confused by the lifetime
markers emitted for it, making unit tests fail. This is covered by
ninja check-msan.
llvm-svn: 299191
Summary:
The -fxray-always-instrument= and -fxray-never-instrument= flags take
filenames that are used to imbue the XRay instrumentation attributes
using a whitelist mechanism (similar to the sanitizer special cases
list). We use the same syntax and semantics as the sanitizer blacklists
files in the implementation.
As implemented, we respect the attributes that are already defined in
the source file (i.e. those that have the
[[clang::xray_{always,never}_instrument]] attributes) before applying
the always/never instrument lists.
Reviewers: rsmith, chandlerc
Subscribers: jfb, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30388
llvm-svn: 299041
Teach UBSan to detect when a value with the _Nonnull type annotation
assumes a null value. Call expressions, initializers, assignments, and
return statements are all checked.
Because _Nonnull does not affect IRGen, the new checks are disabled by
default. The new driver flags are:
-fsanitize=nullability-arg (_Nonnull violation in call)
-fsanitize=nullability-assign (_Nonnull violation in assignment)
-fsanitize=nullability-return (_Nonnull violation in return stmt)
-fsanitize=nullability (all of the above)
This patch builds on top of UBSan's existing support for detecting
violations of the nonnull attributes ('nonnull' and 'returns_nonnull'),
and relies on the compiler-rt support for those checks. Eventually we
will need to update the diagnostic messages in compiler-rt (there are
FIXME's for this, which will be addressed in a follow-up).
One point of note is that the nullability-return check is only allowed
to kick in if all arguments to the function satisfy their nullability
preconditions. This makes it necessary to emit some null checks in the
function body itself.
Testing: check-clang and check-ubsan. I also built some Apple ObjC
frameworks with an asserts-enabled compiler, and verified that we get
valid reports.
Differential Revision: https://reviews.llvm.org/D30762
llvm-svn: 297700
This patch honors the unaligned type qualifier (currently available through he
keyword __unaligned and -fms-extensions) in CodeGen. In the current form the
patch affects declarations and expressions. It does not affect fields of
classes.
Differential Revision: https://reviews.llvm.org/D30166
llvm-svn: 297276
Summary:
Functions with the "xray_log_args" attribute will tell LLVM to emit a special
XRay sled for compiler-rt to copy any call arguments to your logging handler.
Reviewers: dberris
Reviewed By: dberris
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D29704
llvm-svn: 296999
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang, check-ubsan, and a stage2 ubsan build.
I also compiled X86FastISel.cpp with -fsanitize=null using
patched/unpatched clangs based on r293572. Here are the number of null
checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit:
- Don't introduce any unintentional object-size or alignment checks.
- Don't rely on IRGen of C labels in the test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295515
This reverts commit r295401. It breaks the ubsan self-host. It inserts
object size checks once per C++ method which fire when the structure is
empty.
llvm-svn: 295494
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Changes since the initial commit: don't rely on IRGen of C labels in the
test.
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295401
This patch teaches ubsan to insert exactly one null check for the 'this'
pointer per method/lambda.
Previously, given a load of a member variable from an instance method
('this->x'), ubsan would insert a null check for 'this', and another
null check for '&this->x', before allowing the load to occur.
Similarly, given a call to a method from another method bound to the
same instance ('this->foo()'), ubsan would a redundant null check for
'this'. There is also a redundant null check in the case where the
object pointer is a reference ('Ref.foo()').
This patch teaches ubsan to remove the redundant null checks identified
above.
Testing: check-clang and check-ubsan. I also compiled X86FastISel.cpp
with -fsanitize=null using patched/unpatched clangs based on r293572.
Here are the number of null checks emitted:
-------------------------------------
| Setup | # of null checks |
-------------------------------------
| unpatched, -O0 | 21767 |
| patched, -O0 | 10758 |
-------------------------------------
Differential Revision: https://reviews.llvm.org/D29530
llvm-svn: 295391