This patch fixes various places in clang to propagate may-alias
TBAA access descriptors during construction of lvalues, thus
eliminating the need for the LValueBaseInfo::MayAlias flag.
This is part of D38126 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D39008
llvm-svn: 316988
This patch addresses the rest of the cases where we pass lvalue
base info, but do not provide corresponding TBAA info.
This patch should not bring in any functional changes.
This is part of D38126 reworked to be a separate patch to make
reviewing easier.
Differential Revision: https://reviews.llvm.org/D38945
llvm-svn: 315986
According to the documentation, when encoding a bit-field, GNU runtime
needs its starting position in addition to its type and size.
https://gcc.gnu.org/onlinedocs/gcc/Type-encoding.html
Prior to r297702, the starting position information was not being
encoded, which is incorrect, and after r297702, an assertion started to
fail because an ObjCIvarDecl was being passed to a function expecting a
FieldDecl.
This commit moves LookupFieldBitOffset to ASTContext and uses the
function to encode the starting position of bit-fields.
llvm-svn: 306364
The assertion fails because EmitValueForIvarAtOffset doesn't get the
correct type of the ivar when the class the ivar belongs to is
parameterized. This commit fixes the function to compute the ivar's type
based on the type argument provided to the parameterized class.
rdar://problem/32461723
Differential Revision: https://reviews.llvm.org/D33698
llvm-svn: 304449
The functions creating LValues propagated information about alignment
source. Extend the propagated data to also include information about
possible unrestricted aliasing. A new class LValueBaseInfo will
contain both AlignmentSource and MayAlias info.
This patch should not introduce any functional changes.
Differential Revision: https://reviews.llvm.org/D33284
llvm-svn: 303358
Incorrect specification of the calling convention results in UB which can cause
the code path to be eliminated. Simplify the existing code by using the
RuntimeCall constructor in `CodeGenFunction`.
llvm-svn: 284154
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
tools/clang/test/CodeGen/packed-nest-unpacked.c contains this test:
struct XBitfield {
unsigned b1 : 10;
unsigned b2 : 12;
unsigned b3 : 10;
};
struct YBitfield {
char x;
struct XBitfield y;
} __attribute((packed));
struct YBitfield gbitfield;
unsigned test7() {
// CHECK: @test7
// CHECK: load i32, i32* getelementptr inbounds (%struct.YBitfield, %struct.YBitfield* @gbitfield, i32 0, i32 1, i32 0), align 4
return gbitfield.y.b2;
}
The "align 4" is actually wrong. Accessing all of "gbitfield.y" as a single
i32 is of course possible, but that still doesn't make it 4-byte aligned as
it remains packed at offset 1 in the surrounding gbitfield object.
This alignment was changed by commit r169489, which also introduced changes
to bitfield access code in CGExpr.cpp. Code before that change used to take
into account *both* the alignment of the field to be accessed within the
current struct, *and* the alignment of that outer struct itself; this logic
was removed by the above commit.
Neglecting to consider both values can cause incorrect code to be generated
(I've seen an unaligned access crash on SystemZ due to this bug).
In order to always use the best known alignment value, this patch removes
the CGBitFieldInfo::StorageAlignment member and replaces it with a
StorageOffset member specifying the offset from the start of the surrounding
struct to the bitfield's underlying storage. This offset can then be combined
with the best-known alignment for a bitfield access lvalue to determine the
alignment to use when accessing the bitfield's storage.
Differential Revision: http://reviews.llvm.org/D11034
llvm-svn: 241916
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
CodeGenABITypes is a wrapper built on top of CodeGenModule that exposes
some of the functionality of CodeGenTypes (held by CodeGenModule),
specifically methods that determine the LLVM types appropriate for
function argument and return values.
I addition to CodeGenABITypes.h, CGFunctionInfo.h is introduced, and the
definitions of ABIArgInfo, RequiredArgs, and CGFunctionInfo are moved
into this new header from the private headers ABIInfo.h and CGCall.h.
Exposing this functionality is one part of making it possible for LLDB
to determine the actual ABI locations of function arguments and return
values, making it possible for it to determine this for any supported
target without hard-coding ABI knowledge in the LLDB code.
llvm-svn: 193717
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286
generally support the C++11 memory model requirements for bitfield
accesses by relying more heavily on LLVM's memory model.
The primary change this introduces is to move from a manually aligned
and strided access pattern across the bits of the bitfield to a much
simpler lump access of all bits in the bitfield followed by math to
extract the bits relevant for the particular field.
This simplifies the code significantly, but relies on LLVM to
intelligently lowering these integers.
I have tested LLVM's lowering both synthetically and in benchmarks. The
lowering appears to be functional, and there are no really significant
performance regressions. Different code patterns accessing bitfields
will vary in how this impacts them. The only real regressions I'm seeing
are a few patterns where the LLVM code generation for loads that feed
directly into a mask operation don't take advantage of the x86 ability
to do a smaller load and a cheap zero-extension. This doesn't regress
any benchmark in the nightly test suite on my box past the noise
threshold, but my box is quite noisy. I'll be watching the LNT numbers,
and will look into further improvements to the LLVM lowering as needed.
llvm-svn: 169489
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
This is useful because unnamed bitfields can have effects on the
offsets which are not otherwise reflected in the DWARF information.
<rdar://problem/12629719>
llvm-svn: 167503
in the ABI arrangement, and leave a hook behind so that we can easily
tweak CCs on platforms that use different CCs by default for C++
instance methods.
llvm-svn: 159894
optional argument passed through the variadic ellipsis)
potentially affects how we need to lower it. Propagate
this information down to the various getFunctionInfo(...)
overloads on CodeGenTypes. Furthermore, rename those
overloads to clarify their distinct purposes, and make
sure we're calling the right one in the right place.
This has a nice side-effect of making it easier to construct
a function type, since the 'variadic' bit is no longer
separable.
This shouldn't really change anything for our existing
platforms, with one minor exception --- we should now call
variadic ObjC methods with the ... in the "right place"
(see the test case), which I guess matters for anyone
running GNUStep on MIPS. Mostly it's just a substantial
clean-up.
llvm-svn: 150788
to declaresSameEntity(), as a baby step toward tracking forward
declarations of Objective-C classes precisely. Part of
<rdar://problem/10583531>.
llvm-svn: 146618
- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
hierarchy of delegation, and that EH selector values are meaningful
function-wide (good thing, too, or inlining wouldn't work).
2,3d
1a
hierarchy of delegation and that EH selector values have the same
meaning everywhere in the function instead of being meaningful only
in the context of a specific selector.
This removes the need for routing edges through EH cleanups,
since a cleanup simply always branches to its enclosing scope.
llvm-svn: 137293
This was previously not-const only because it has to lazily construct a chain
of ivars the first time it is called (and after the chain is invalidated).
In practice, all the clients were just const_casting their const Decls;
all those now-unnecessary const_casts have been removed.
llvm-svn: 135741