Commit Graph

240 Commits

Author SHA1 Message Date
Manuel Jacob a485984c0c [PM] Schedule InstSimplify after late LICM run, to clean up LCSSA nodes.
Summary:
The module pass pipeline includes a late LICM run after loop
unrolling.  LCSSA is implicitly run as a pass dependency of LICM.  However no
cleanup pass was run after this, so the LCSSA nodes ended in the optimized output.

Reviewers: hfinkel, mehdi_amini

Subscribers: majnemer, bruno, mzolotukhin, mehdi_amini, llvm-commits

Differential Revision: http://reviews.llvm.org/D20606

llvm-svn: 271602
2016-06-02 22:14:26 +00:00
Andrew Kaylor 04f8e06696 Update the stack coloring pass to remove lifetime intrinsics in the optnone/opt-bisect skip case.
Differential Revision: http://reviews.llvm.org/D20453

llvm-svn: 271068
2016-05-27 22:56:49 +00:00
Andrew Kaylor 50271f787e Add opt-bisect support to additional passes that can be skipped
Differential Revision: http://reviews.llvm.org/D19882

llvm-svn: 268457
2016-05-03 22:32:30 +00:00
Mehdi Amini 7f7d8be518 Move "Eliminate Available Externally" immediately after the inliner
This pass is supposed to reduce the size of the IR for compile time
purpose. We should run it ASAP, except when we prepare for LTO or
ThinLTO, and we want to keep them available for link-time inline.

Differential Revision: http://reviews.llvm.org/D19813

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268394
2016-05-03 15:46:00 +00:00
Mehdi Amini 45c7b3ecb5 Move createReversePostOrderFunctionAttrsPass right after the inliner is done
This is where it was originally, until LoopVersioningLICM was
inserted before in r259986, I don't believe it was on purpose.

Differential Revision: http://reviews.llvm.org/D19809

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 268252
2016-05-02 16:53:16 +00:00
Nico Weber 2f1459cbb7 Try to get ResponseFile.ll passing on Windows after r267556.
llvm-svn: 267599
2016-04-26 20:32:51 +00:00
Andrew Kaylor aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Vedant Kumar 6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
Andrew Kaylor f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Chandler Carruth 4c660f7087 [CG] Add a new pass manager printer pass for the old call graph and
actually finish wiring up the old call graph.

There were bugs in the old call graph that hadn't been caught because it
wasn't being tested. It wasn't being tested because it wasn't in the
pipeline system and we didn't have a printing pass to run in tests. This
fixes all of that.

As for why I'm still keeping the old call graph alive its so that I can
port GlobalsAA to the new pass manager with out forking it to work with
the lazy call graph. That's clearly the right eventual design, but it
seems pragmatic to defer that until its necessary. The old call graph
works just fine for GlobalsAA.

llvm-svn: 263104
2016-03-10 11:24:11 +00:00
Chandler Carruth 61440d225b [PM] Port memdep to the new pass manager.
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.

There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.

Differential Revision: http://reviews.llvm.org/D17962

llvm-svn: 263082
2016-03-10 00:55:30 +00:00
Chandler Carruth 8b5a7419b8 [PM] Wire up optimization levels and default pipeline construction APIs
in the PassBuilder.

These are really just stubs for now, but they give a nice API surface
that Clang or other tools can start learning about and enabling for
experimentation.

I've also wired up parsing various synthetic module pass names to
generate these set pipelines. This allows the pipelines to be combined
with other passes and have their order controlled, with clear separation
between the *kind* of canned pipeline, and the *level* of optimization
to be used within that canned pipeline.

The most interesting part of this patch is almost certainly the spec for
the different optimization levels. I don't think we can ever have hard
and fast rules that would make it easy to determine whether a particular
optimization makes sense at a particular level -- it will always be in
large part a judgement call. But hopefully this will outline the
expected rationale that should be used, and the direction that the
pipelines should be taken. Much of this was based on a long llvm-dev
discussion I started years ago to try and crystalize the intent behind
these pipelines, and now, at long long last I'm returning to the task of
actually writing it down somewhere that we can cite and try to be
consistent with.

Differential Revision: http://reviews.llvm.org/D12826

llvm-svn: 262196
2016-02-28 22:16:03 +00:00
Chandler Carruth 30811a4dde [PM] Loosen the regex for the proxy template name even further to cope
with 'class' keywords in the template arguments and other silliness.

llvm-svn: 262130
2016-02-27 11:07:16 +00:00
Chandler Carruth 08a25ce0e3 [PM] Use a boring regex instead of explicitly naming the analysis
manager as some compilers print the typedef name and others print the
"canonical" name of the underlying class template.

This isn't really an important artifact of the test anyways so it seems
fine to just loosen the test assertions here.

llvm-svn: 262129
2016-02-27 10:48:14 +00:00
Chandler Carruth 2a54094d40 [PM] Provide two templates for the two directionalities of analysis
manager proxies and use those rather than repeating their definition
four times.

There are real differences between the two directions: outer AMs are
const and don't need to have invalidation tracked. But every proxy in
a particular direction is identical except for the analysis manager type
and the IR unit they proxy into. This makes them prime candidates for
nice templates.

I've started introducing explicit template instantiation declarations
and definitions as well because we really shouldn't be emitting all this
everywhere. I'm going to go back and add the same for the other
templates like this in a follow-up patch.

I've left the analysis manager as an opaque type rather than using two
IR units and requiring it to be an AnalysisManager template
specialization. I think its important that users retain the ability to
provide their own custom analysis management layer and provided it has
the appropriate API everything should Just Work.

llvm-svn: 262127
2016-02-27 10:38:10 +00:00
Chandler Carruth 3a63435551 [PM] Introduce CRTP mixin base classes to help define passes and
analyses in the new pass manager.

These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.

Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.

This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.

llvm-svn: 262004
2016-02-26 11:44:45 +00:00
Chandler Carruth 395fe57374 [PM] Add the IR unit type to the pass manager's logging and make all of
the testing more more explicit.

This will currently fail on platforms without support for getTypeName.
While an assert failure seems too harsh, I'm hoping we're OK with the
regression test failure, and I'd like to find out about what platforms
actually exist in this state if there are any so we can get
implementations in place for them.

But if we just can't fix all the host compilers to have a reasonably
portable variant of getTypeName and are worried about xfailing this test
on those platforms, I can add the horrible regular expression magic to
make the tests support "unknown" here as well.

llvm-svn: 261853
2016-02-25 10:27:39 +00:00
Justin Bogner eecc3c826a PM: Implement a basic loop pass manager
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.

This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.

llvm-svn: 261831
2016-02-25 07:23:08 +00:00
Chandler Carruth 31088a9d58 [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

llvm-svn: 261316
2016-02-19 10:45:18 +00:00
Chandler Carruth 1aff022c9b [LPM] Actually test what the O2 pass pipeline consists of in key places,
especially the *structure* of it with respect to various pass managers.

This uncovers an absolute horror show of problems. This test shows just
how bad PR24804 is: we have a totaly of *seven* loop pass managers in
the main optimization pipeline.

I've tried to comment the various bits to the best of my knowledge, but
more enhancements here would be great.

Also great would be folks adding various test for other pipelines, I'm
focused on trying to fix the O2 pipeline. I just wanted a test to show
what I'm changing.

llvm-svn: 261305
2016-02-19 04:09:40 +00:00
Chandler Carruth edf5996b06 [PM/AA] Teach the new pass manager to use pass-by-lambda for registering
analysis passes, support pre-registering analyses, and use that to
implement parsing and pre-registering a custom alias analysis pipeline.

With this its possible to configure the particular alias analysis
pipeline used by the AAManager from the commandline of opt. I've updated
the test to show this effectively in use to build a pipeline including
basic-aa as part of it.

My big question for reviewers are around the APIs that are used to
expose this functionality. Are folks happy with pass-by-lambda to do
pass registration? Are folks happy with pre-registering analyses as
a way to inject customized instances of an analysis while still using
the registry for the general case?

Other thoughts of course welcome. The next round of patches will be to
add the rest of the alias analyses into the new pass manager and wire
them up here so that they can be used from opt. This will require
extending the (somewhate limited) functionality of AAManager w.r.t.
module passes.

Differential Revision: http://reviews.llvm.org/D17259

llvm-svn: 261197
2016-02-18 09:45:17 +00:00
Chandler Carruth bece8d517d [PM/AA] Wire BasicAA's new pass manager class up to the pass registry.
This ensures that all of the various pieces are working. The next patch
will wire up commandline-driven alias analysis chain building and allow
BasicAA to work with the AAManager.

llvm-svn: 260838
2016-02-13 23:46:24 +00:00
Chandler Carruth 6f5770b10f [PM/AA] Actually wire the AAManager I built for the new pass manager
into the new pass manager and fix the latent bugs there.

This lets everything live together nicely, but it isn't really useful
yet. I never finished wiring the AA layer up for the new pass manager,
and so subsequent patches will change this to do that wiring and get AA
stuff more fully integrated into the new pass manager. Turns out this is
necessary even to get functionattrs ported over. =]

llvm-svn: 260836
2016-02-13 23:32:00 +00:00
Weiming Zhao 0f1762caf9 Recommit r256952 "Filtering IR printing for print-after-all/print-before-all"
Fix lit test fail due to outputting an extra line.

Differential Revision: http://reviews.llvm.org/D15776

llvm-svn: 256987
2016-01-06 22:55:03 +00:00
Weiming Zhao b243c95c6a Revert r256952 due to lit test fails.
llvm-svn: 256954
2016-01-06 18:31:44 +00:00
Weiming Zhao eac0636805 Filtering IR printing for print-after-all/print-before-all
Summary:
This patch implements "-print-funcs" option to support function filtering for IR printing like -print-after-all, -print-before etc.
Examples:
  -print-after-all -print-funcs=foo,bar

Reviewers: mcrosier, joker.eph

Subscribers: tejohnson, joker.eph, llvm-commits

Differential Revision: http://reviews.llvm.org/D15776

llvm-svn: 256952
2016-01-06 18:20:25 +00:00
Keno Fischer 04464cf731 [llc/opt] Add an option to run all passes twice
Summary: Lately, I have submitted a number of patches to fix bugs that
only occurred when using the same pass manager to compile multiple
modules (generally these bugs are failure to reset some persistent
state). Unfortunately I don't think there is currently a way to test
that from the command line. This adds a very simple flag to both llc
and opt, under which the tools will simply re-run their respective
pass pipelines using the same pass manager on (a clone of the same
module). Additionally, we verify that both outputs are bitwise the
same.

Reviewers: yaron.keren

Subscribers: loladiro, yaron.keren, kcc, llvm-commits

Differential Revision: http://reviews.llvm.org/D14965

llvm-svn: 254774
2015-12-04 21:56:46 +00:00
Pete Cooper 67cf9a723b Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Pete Cooper 72bc23ef02 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
Mehdi Amini d178f4fc89 Make the default triple optional by allowing an empty string
When building LLVM as a (potentially dynamic) library that can be linked against
by multiple compilers, the default triple is not really meaningful.
We allow to explicitely set it to an empty string when configuring LLVM.
In this case, said "target independent" tests in the test suite that are using
the default triple are disabled by matching the newly available feature
"default_triple".

Reviewers: probinson, echristo
Differential Revision: http://reviews.llvm.org/D12660

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 247775
2015-09-16 05:34:32 +00:00
David Blaikie 2f40830dde [opaque pointer type] Add textual IR support for explicit type parameter for global aliases
update.py:
import fileinput
import sys
import re

alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias"
plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)")
cast  = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)")
gep   = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)")

def conv(line):
  m = re.match(cast, line)
  if m:
    return m.group(1) + " " + m.group(3) + ", " + m.group(2)
  m = re.match(gep, line)
  if m:
    return m.group(1) + " " + m.group(3) + ", " + m.group(2)
  m = re.match(plain, line)
  if m:
    return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n"
  return line

for line in sys.stdin:
  sys.stdout.write(conv(line))

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

llvm-svn: 247378
2015-09-11 03:22:04 +00:00
Mehdi Amini c8d5783114 Update test suite to make "ninja check" succeed without native backend builtin
Requires "native" feature in most places that were failing.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243960
2015-08-04 06:32:54 +00:00
Reid Kleckner fc0f93832b [llvm-extract] Drop comdats from declarations
The verifier rejects comdats on declarations.

llvm-svn: 241483
2015-07-06 18:48:02 +00:00
David Majnemer 7fddeccb8b Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

llvm-svn: 239940
2015-06-17 20:52:32 +00:00
Akira Hatanaka 3058d0f080 Let llc and opt override "-target-cpu" and "-target-features" via command line
options.

This commit fixes a bug in llc and opt where "-mcpu" and "-mattr" wouldn't
override function attributes "-target-cpu" and "-target-features" in the IR.

Differential Revision: http://reviews.llvm.org/D9537

llvm-svn: 236677
2015-05-06 23:54:14 +00:00
David Blaikie 23af64846f [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
David Blaikie f72d05bc7b [opaque pointer type] Add textual IR support for explicit type parameter to gep operator
Similar to gep (r230786) and load (r230794) changes.

Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.

(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)

import fileinput
import sys
import re

rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)

def conv(match):
  line = match.group(1)
  line += match.group(4)
  line += ", "
  line += match.group(2)
  return line

line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
  sys.stdout.write(line[off:match.start()])
  sys.stdout.write(conv(match))
  off = match.end()
sys.stdout.write(line[off:])

llvm-svn: 232184
2015-03-13 18:20:45 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Reid Kleckner 96d011315a Don't promote asynch EH invokes of nounwind functions to calls
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.

Also add some landingpads to invalid LLVM IR test cases that lack them.

Over-the-shoulder reviewed by David Majnemer.

llvm-svn: 228782
2015-02-11 01:23:16 +00:00
Chandler Carruth 9f8d9b613c [PM] Teach the module-to-function adaptor to not run function passes
over declarations.

This is both quite unproductive and causes things to crash, for example
domtree would just assert.

I've added a declaration and a domtree run to the basic high-level tests
for the new pass manager.

llvm-svn: 227724
2015-02-01 10:47:25 +00:00
Chandler Carruth e038552c8a [PM] Port TTI to the new pass manager, introducing a TargetIRAnalysis to
produce it.

This adds a function to the TargetMachine that produces this analysis
via a callback for each function. This in turn faves the way to produce
a *different* TTI per-function with the correct subtarget cached.

I've also done the necessary wiring in the opt tool to thread the target
machine down and make it available to the pass registry so that we can
construct this analysis from a target machine when available.

llvm-svn: 227721
2015-02-01 10:11:22 +00:00
Yunzhong Gao a8cf495a15 If we see UTF-8 BOM sequence at the beginning of a response file, we shall
remove these bytes before parsing.

Phabricator Revision: http://reviews.llvm.org/D7156

llvm-svn: 226988
2015-01-24 04:23:08 +00:00
Chandler Carruth 8ca43224db [PM] Port TargetLibraryInfo to the new pass manager, provided by the
TargetLibraryAnalysis pass.

There are actually no direct tests of this already in the tree. I've
added the most basic test that the pass manager bits themselves work,
and the TLI object produced will be tested by an upcoming patches as
they port passes which rely on TLI.

This is starting to point out the awkwardness of the invalidate API --
it seems poorly fitting on the *result* object. I suspect I will change
it to live on the analysis instead, but that's not for this change, and
I'd rather have a few more passes ported in order to have more
experience with how this plays out.

I believe there is only one more analysis required in order to start
porting instcombine. =]

llvm-svn: 226160
2015-01-15 11:39:46 +00:00
Chandler Carruth 703378f156 [PM] Remove the defunt CGSCC-specific debug flag.
Even before I sunk the debug flag into the opt tool this had been made
obsolete by factoring the pass and analysis managers into a single set
of templates that all used the core flag. No functionality changed here.

llvm-svn: 225842
2015-01-13 22:45:13 +00:00
Chandler Carruth 816702ffe0 [PM] Refactor the new pass manager to use a single template to implement
the generic functionality of the pass managers themselves.

In the new infrastructure, the pass "manager" isn't actually interesting
at all. It just pipelines a single chunk of IR through N passes. We
don't need to know anything about the IR or the passes to do this really
and we can replace the 3 implementations of the exact same functionality
with a single generic PassManager template, complementing the single
generic AnalysisManager template.

I've left typedefs in place to give convenient names to the various
obvious instantiations of the template.

With this, I think I've nuked almost all of the redundant logic in the
managers, and I think the overall design is actually simpler for having
single templates that clearly indicate there is no special logic here.
The logging is made somewhat more annoying by this change, but I don't
think the difference is worth having heavy-weight traits to help log
things.

llvm-svn: 225783
2015-01-13 11:13:56 +00:00
Chandler Carruth 7ad6d620b7 [PM] Fold all three analysis managers into a single AnalysisManager
template.

This consolidates three copies of nearly the same core logic. It adds
"complexity" to the ModuleAnalysisManager in that it makes it possible
to share a ModuleAnalysisManager across multiple modules... But it does
so by deleting *all of the code*, so I'm OK with that. This will
naturally make fixing bugs in this code much simpler, etc.

The only down side here is that we have to use 'typename' and 'this->'
in various places, and the implementation is lifted into the header.
I'll take that for the code size reduction.

The convenient names are still typedef-ed and used throughout so that
users can largely ignore this aspect of the implementation.

The follow-up change to this will do the exact same refactoring for the
PassManagers. =D

It turns out that the interesting different code is almost entirely in
the adaptors. At the end, that should be essentially all that is left.

llvm-svn: 225757
2015-01-13 02:51:47 +00:00
Chandler Carruth e5b0a9cf3d [PM] Give slightly less horrible names to the utility pass templates for
requiring and invalidating specific analyses. Also make their printed
names match their class names. Writing these out as prose really doesn't
make sense to me any more.

llvm-svn: 225346
2015-01-07 11:14:51 +00:00
Chandler Carruth fdb4180514 [PM] Fix a pretty nasty bug where the new pass manager would invalidate
passes too many time.

I think this is actually the issue that someone raised with me at the
developer's meeting and in an email, but that we never really got to the
bottom of. Having all the testing utilities made it much easier to dig
down and uncover the core issue.

When a pass manager is running many passes over a single function, we
need it to invalidate the analyses between each run so that they can be
re-computed as needed. We also need to track the intersection of
preserved higher-level analyses across all the passes that we run (for
example, if there is one module analysis which all the function analyses
preserve, we want to track that and propagate it). Unfortunately, this
interacted poorly with any enclosing pass adaptor between two IR units.
It would see the intersection of preserved analyses, and need to
invalidate any other analyses, but some of the un-preserved analyses
might have already been invalidated *and recomputed*! We would fail to
propagate the fact that the analysis had already been invalidated.

The solution to this struck me as really strange at first, but the more
I thought about it, the more natural it seemed. After a nice discussion
with Duncan about it on IRC, it seemed even nicer. The idea is that
invalidating an analysis *causes* it to be preserved! Preserving the
lack of result is trivial. If it is recomputed, great. Until something
*else* invalidates it again, we're good.

The consequence of this is that the invalidate methods on the analysis
manager which operate over many passes now consume their
PreservedAnalyses object, update it to "preserve" every analysis pass to
which it delivers an invalidation (regardless of whether the pass
chooses to be removed, or handles the invalidation itself by updating
itself). Then we return this augmented set from the invalidate routine,
letting the pass manager take the result and use the intersection of
*that* across each pass run to compute the final preserved set. This
accounts for all the places where the early invalidation of an analysis
has already "preserved" it for a future run.

I've beefed up the testing and adjusted the assertions to show that we
no longer repeatedly invalidate or compute the analyses across nested
pass managers.

llvm-svn: 225333
2015-01-07 01:58:35 +00:00