Rearrange the contents of __builtin_* module files a little and
make sure that semantics implicitly USEs the module __Fortran_builtins
before processing each source file. This ensures that the special derived
types for TEAM_TYPE, EVENT_TYPE, LOCK_TYPE, &c. exist in the symbol table
where they will be available for use in coarray intrinsic function
processing.
Update IsTeamType() to exploit access to the __Fortran_builtins
module rather than applying ad hoc name tests. Move it and some
other utilities from Semantics/tools.* to Evaluate/tools.* to make
them available to intrinsics processing.
Add/correct the intrinsic table definitions for GET_TEAM, TEAM_NUMBER,
and THIS_IMAGE to exercise the built-in TEAM_TYPE as an argument and
as a result.
Add/correct/extend tests accordingly.
Differential Revision: https://reviews.llvm.org/D110356
Enforce constraints C1034 & C1038, which disallow the use
of otherwise valid statements as branch targets when they
appear in FORALL &/or WHERE constructs. (And make the
diagnostic message somewhat more user-friendly.)
Differential Revision: https://reviews.llvm.org/D109936
A defined assignment subroutine invoked in the context of a WHERE
statement or construct must necessarily be elemental (C1032).
Differential Revision: https://reviews.llvm.org/D109932
A pointer with subscripts, substring indices, or components cannot
be initialized by a DATA statement (although of course a whole pointer
can be so). Catch the missing cases.
Differential Revision: https://reviews.llvm.org/D109931
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
Catch additional missing error cases for typed and untyped
NULL actual arguments to non-intrinsic procedures in cases
of explicit and implicit interfaces.
Differential Revision: https://reviews.llvm.org/D110003
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
Catch invalid attempts to extract the unknowable extent of the last
dimension of an assumed-size array dummy argument, and clean up
problems with assumed-rank arguments in similar circumstances
exposed by testing the fix.
Differential Revision: https://reviews.llvm.org/D109918
A procedure actual argument to a PURE procedure should be required
to have an explicit interface. Implicit-interface actual arguments
to non-PURE procedures remain a warning.
Differential Revision: https://reviews.llvm.org/D109926
Validation of the optional generic-spec on an END INTERFACE statement
was missing many possible error cases; reimplement it.
Differential Revision: https://reviews.llvm.org/D109910
This patch implements the following semantic checks according to
OpenMP Version 5.1 Ordered construct restriction:
```
At most one threads clause can appear on an ordered construct; At most
one simd clause can appear on an ordered construct; At most one
depend(source) clause can appear on an ordered construct; Either
depend(sink:vec) clauses or depend(source) clauses may appear on an
ordered construct, but not both.
```
This patch also implements the following semantic checks according to
the syntax and descriptions in OpenMP Version 5.1 Ordered construct:
```
The dependence types of sink or source are only allowed on an ordered
construct. The depend(*) clauses are not allowed when ordered construct
is a block construct with an ordered region. The threads or simd clauses
are not allowed when the ordered construct is a standalone construct
with no ordered region.
```
Co-authored-by: Sameeran Joshi <sameeranjayant.joshi@amd.com>
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D108512
When the shapes of actual arguments to ELEMENTAL procedures are
sufficiently well known during semantics, require them to conform.
Differential Revision: https://reviews.llvm.org/D109909
Improve checking for NULL() and NULL(MOLD=) when used as
variables and expressions outside the few contexts where
a disassociated pointer can be valid. There were both
inappropriate errors and missing checks.
Differential Revision: https://reviews.llvm.org/D109905
This patch implements the following check for THREADPRIVATE construct:
```
A variable that is part of another variable (as an array, structure
element or type parameter inquiry) cannot appear in a threadprivate
directive.
```
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D109685
This patch adds parsing support for the nontemporal clause. Also adds a couple of test cases.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D106896
https://reviews.llvm.org/D109156 did not properly update the case where
the equivalence symbol appearing in the common statement is the
"base symbol of an equivalence group" (this was the only case that previously
worked ok, and the patch broke it).
Fix this and add a test that actually uses this code path.
Differential Revision: https://reviews.llvm.org/D109439
Adds missing semantic checks for ELEMENTAL functions and subroutines,
their dummy arguments, and their results from F'2018 15.8.1 C15100-15102.
Differential Revision: https://reviews.llvm.org/D109380
It only worked for internal procedures of subprograms,
but must also allow for internal procedures of the
main program. This broke the use of host-associated
implicitly-typed symbols in specification expressions
of internal procedures.
Differential Revision: https://reviews.llvm.org/D109262
Move the closure of the subset of flang/runtime/*.h header files that
are referenced by source files outside flang/runtime (apart from unit tests)
into a new directory (flang/include/flang/Runtime) so that relative
include paths into ../runtime need not be used.
flang/runtime/pgmath.h.inc is moved to flang/include/flang/Evaluate;
it's not used by the runtime.
Differential Revision: https://reviews.llvm.org/D109107
The size of common block should be extended to cover any storage
sequence that are storage associated with the common block via
equivalences (8.10.2.2 point 1 (2)).
In symbol size and offset computation, the size of the common block
was not always extended to cover storage association. It was only done
if the "base symbol of an equivalence group"(*) appeared in a common block
statement. Correct this to cover all cases where a symbol appearing in a
common block statement is storage associated.
(*) the base symbol of an equivalence group is the symbol whose storage
starts first in a storage association (if several symbols starts first,
the base symbol is the last one visited by the algorithm going through
the equivalence sets).
Differential Revision: https://reviews.llvm.org/D109156
Don't create new symbols in FORALL, implied DO, or other
construct scopes when an undeclared name appears; use the
innermost enclosing program unit's scope. This clears up
a pending TODO in name resolution, and also exposes (& fixes)
an unnoticed name resolution problem in a module file test.
Differential Revision: https://reviews.llvm.org/D109095
The evaluation order for the `|` operator is undefined
(in contrast to the short-circuiting `||` operator). The arguments are
stored in variables to force a specific evaluation order.
A test in D107575 relies on this change.
Reviewed By: kiranchandramohan, klausler
Differential Revision: https://reviews.llvm.org/D108623
The combined initializers constructed from DATA statements and explicit
static initialization in declarations needs to include derived type
component default initializations, overriding those default values
without complaint with values from explicit DATA statement or declaration
initializations when they overlap. This also has to work for objects
with storage association due to EQUIVALENCE. When storage association causes
default component initializations to overlap, emit errors if and only
if the values differ (See Fortran 2018 subclause 19.5.3, esp. paragraph
10).
The f18 front-end has a module that analyzes and converts DATA statements
into equivalent static initializers for objects. For storage-associated
objects, compiler-generated objects are created that overlay the entire
association and fill it with a combined initializer. This "data-to-inits"
module already exists, and this patch is essentially extension and
clean-up of its machinery to complete the job.
Also: emit EQUIVALENCE to module files; mark compiler-created symbols
and *don't* emit those to module files; check non-static EQUIVALENCE
sets for conflicting default component initializations, so lowering
doesn't have to check them or emit diagnostics.
Differential Revision: https://reviews.llvm.org/D109022
It may not be great practice to pass a procedure (or procedure pointer)
with an implicit interface as an actual argument to correspond with
a dummy procedure (pointer), but it's not an error. Change to a
warning, and modify tests accordingly.
Differential Revision: https://reviews.llvm.org/D108932
The index of an implied DO loop in a DATA statement or array
constructor is defined by Fortran 2018 to have scope over its
implied DO loop. This definition is unfortunate, because it
requires the implied DO loop's bounds expressions to be in the
scope of the index variable. Consequently, in code like
integer, parameter :: j = 5
real, save :: a(5) = [(j, j=1, j)]
the upper bound of the loop is a reference to the index variable,
not the parameter in the enclosing scope.
This patch limits the scope of the index variable to the "body"
of the implied DO loop as one would naturally expect, with a warning.
I would have preferred to make this a hard error, but most Fortran
compilers treat this case as f18 now does. If the standard
were to be fixed, the warning could be made optional.
Differential Revision: https://reviews.llvm.org/D108595
This patch implements the following check for TARGET construct:
```
OpenMP Version 5.0 Target construct restriction: If a target update,
target data, target enter data, or target exit data construct is
encountered during execution of a target region, the behavior is
unspecified.
```
Also add one test case for the check.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D106165
This patch implements the following check for TEAMS construct:
```
OpenMP Version 5.0 Teams construct restriction: A teams region can
only be strictly nested within the implicit parallel region or a target
region. If a teams construct is nested within a target construct, that
target construct must contain no statements, declarations or directives
outside of the teams construct.
```
Also add one test case for the check.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D106335
This patch implements the following semantic checks for cancellation constructs:
```
OpenMP Version 5.0 Section 2.18.1: CANCEL construct restriction:
If construct-type-clause is taskgroup, the cancel construct must be
closely nested inside a task or a taskloop construct and the cancel
region must be closely nested inside a taskgroup region. If
construct-type-clause is sections, the cancel construct must be closely
nested inside a sections or section construct. Otherwise, the cancel
construct must be closely nested inside an OpenMP construct that matches
the type specified in construct-type-clause of the cancel construct.
OpenMP Version 5.0 Section 2.18.2: CANCELLATION POINT restriction:
A cancellation point construct for which construct-type-clause is
taskgroup must be closely nested inside a task or taskloop construct,
and the cancellation point region must be closely nested inside a
taskgroup region. A cancellation point construct for which
construct-type-clause is sections must be closely nested inside a
sections or section construct. A cancellation point construct for which
construct-type-clause is neither sections nor taskgroup must be closely
nested inside an OpenMP construct that matches the type specified in
construct-type-clause.
```
Also add test cases for the check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D106538
Recent work in runtime assignments failed an assertion in fir-dev
while running tests (flang/test/Semantics/defined-ops.f90). This
test didn't fail in llvm-project/main because only the "new" Arm
driver is used now, and that only builds runtime derived type information
tables when some debug dumping options are enabled.
So add a reproducing test case to another test that is run with
-fdebug-dump-symbols, and fix the crash by emitting special procedure
binding information only for type-bound generic ASSIGNMENT(=) bindings
that are relevant to the runtime support library for use in intrinsic
assignment of derived types.
Differential Revision: https://reviews.llvm.org/D107918
https://reviews.llvm.org/D105464 did not correctly cover the case
where the symbol from the host procedure is use associated. Outside
of the mis-parsed ArrayRef case, flang was also creating a symbol with
HostAssociated details inside the internal procedure (pointing to the
use associated symbol in the host). That is what lowering expects.
This patch ensures the same logic is applied in the mis-parsed array-ref name
resolution (and the pointer target name resolution).
Differential Revision: https://reviews.llvm.org/D107759
Define an API for, and implement, runtime support for arbitrary
assignment of one descriptor's data to another, with full support for
(re)allocation of allocatables with finalization when necessary,
user-defined derived type assignment TBP calls, and intrinsic (default)
componentwise assignment of derived type instances with allocation of
automatic components. Also clean up API and implementation of
finalization/destruction using knowledge gained while studying
edge cases for assignment in the 2018 standard.
The look-up procedure for special procedure bindings in derived
types has been optimized from O(N) to O(1) since it will probably
matter more. This required some analysis in runtime derived type
description table construction in semantics and some changes to the
table schemata.
Executable Fortran tests have been developed; they'll be added
to the test base once they can be lowered and run by f18.
Differential Revision: https://reviews.llvm.org/D107678
Dummy procedures can be defined as subprograms with explicit
interfaces, e.g.
subroutine subr(dummy)
interface
subroutine dummy(x)
real :: x
end subroutine
end interface
! ...
end subroutine
but the symbol table had no means of marking such symbols as dummy
arguments, so predicates like IsDummy(dummy) would fail. Add an
isDummy_ flag to SubprogramNameDetails, analogous to the corresponding
flag in EntityDetails, and set/test it as needed.
Differential Revision: https://reviews.llvm.org/D106697
According to C7109, "A boz-literal-constant shall appear only as a
data-stmt-constant in a DATA statement, or where explicitly allowed in
16.9 as an actual argument of an intrinsic procedure." This change
enforces that constraint for output list items.
I also added a general interface to determine if an expression is a BOZ
literal constant and changed all of the places I could find where it
could be used.
I also added a test.
This change stemmed from the following issue --
https://gitlab-master.nvidia.com/fortran/f18-stage/issues/108
Differential Revision: https://reviews.llvm.org/D106893
Since BOZ literal arguments are typeless, we cannot know how to pass them as
actual arguments to procedures with implicit interfaces. This change avoids
the problem by emitting an error message in such situations.
This change stemmed from the following issue --
https://github.com/flang-compiler/f18-llvm-project/issues/794
Differential Revision: https://reviews.llvm.org/D106831
Use derived type information tables to drive default component
initialization (when needed), component destruction, and calls to
final subroutines. Perform these operations automatically for
ALLOCATE()/DEALLOCATE() APIs for allocatables, automatics, and
pointers. Add APIs for use in lowering to perform these operations
for non-allocatable/automatic non-pointer variables.
Data pointer component initialization supports arbitrary constant
designators, a F'2008 feature, which may be a first for Fortran
implementations.
Differential Revision: https://reviews.llvm.org/D106297
The following semantic check is removed in OpenMP Version 5.0:
```
Taskloop simd construct restrictions: No reduction clause can be specified.
```
Also fix several typos.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D105874
Name resolution is always creating symbols with HostAssocDetails
for host variable names inside internal procedures. This helps lowering
identifying and dealing with such variables inside internal procedures.
However, the case where the variable appears in an ArrayRef mis-parsed
as a FunctionRef goes through a different name resolution path that did
not create such HostAssocDetails when needed. Pointer assignment RHS
are also skipping this path.
Add the logic to create HostAssocDetails for host symbols inisde internal
procedures that appear in mis-parsed ArrayRef or in pointer assignment RHS.
Differential Revision: https://reviews.llvm.org/D105464
With derived type description tables now available to the
runtime library, it is possible to implement the concept
of "child" I/O statements in the runtime and use them to
convert instances of derived type I/O data transfers into
calls to user-defined subroutines when they have been specified
for a type. (See Fortran 2018, subclauses 12.6.4.8 & 13.7.6).
- Support formatted, list-directed, and NAMELIST
transfers to internal parent units; support these, and unformatted
transfers, for external parent units.
- Support nested child defined derived type I/O.
- Parse DT'foo'(v-list) FORMAT data edit descriptors and passes
their strings &/or v-list values as arguments to the defined
formatted I/O routines.
- Fix problems with this feature encountered in semantics and
FORMAT valiation during development and end-to-end testing.
- Convert typeInfo::SpecialBinding from a struct to a class
after adding a member function.
Differential Revision: https://reviews.llvm.org/D104930
A recent change that extended semantic analysis for actual arguments
that associate with procedure dummy arguments exposed some bugs in
regression test suites due to points of confusion in symbol table
handling in situations where a generic interface contains a specific
procedure of the same name. When passing that name as an actual
argument, for example, it's necessary to take this possibility into
account because the symbol for the generic interface shadows the
symbol of the same name for the specific procedure, which is
what needs to be checked. So add a small utility that bypasses
the symbol for a generic interface in this case, and use it
where needed.
Differential Revision: https://reviews.llvm.org/D104929
Work around two problems with GCC 7.3.
One is its inability to implement "constexpr operator=(...) = default;"
in a class with a std::optional<> component; another is a legitimate-
looking warning about an unused variable.
Differential Revision: https://reviews.llvm.org/D104731
This patch adds the following nesting check for `barrier` constructs:
```
A barrier region may not be closely nested inside a worksharing, loop, task, taskloop, critical, ordered, atomic, or master region.
```
Also adds a test case for the check,
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D99888
This is *not* user-defined derived type I/O, but rather Fortran's
built-in capabilities for using derived type data in I/O lists
and NAMELIST groups.
This feature depends on having the derived type description tables
that are created by Semantics available, passed through compilation
as initialized static objects to which pointers can be targeted
in the descriptors of I/O list items and NAMELIST groups.
NAMELIST processing now handles component references on input
(e.g., "&GROUP x%component = 123 /").
The C++ perspectives of the derived type information records
were transformed into proper classes when it was necessary to add
member functions to them.
The code in Semantics that generates derived type information
was changed to emit derived type components in component order,
not alphabetic order.
Differential Revision: https://reviews.llvm.org/D104485
When a function is called in a specification expression, it must be
sufficiently defined, and cannot be a recursive call (10.1.11(5)).
The best fix for this is to change the contract for the procedure
characterization infrastructure to catch and report such errors,
and to guarantee that it does emit errors on failed characterizations.
Some call sites were adjusted to avoid cascades.
Differential Revision: https://reviews.llvm.org/D104330
When a program attempts to put something like a subprogram
into an array constructor, emit an error rather than crashing.
Differential Revision: https://reviews.llvm.org/D104336
Flang diverges from the llvm coding style in that it requires braces
around the bodies of if/while/etc statements, even when the body is
a single statement.
This commit adds the readability-braces-around-statements check to
flang's clang-tidy config file. Hopefully the premerge bots will pick it
up and report violations in Phabricator.
We also explicitly disable the check in the directories corresponding to
the Lower and Optimizer libraries, which rely heavily on mlir and llvm
and therefore follow their coding style. Likewise for the tools
directory.
We also fix any outstanding violations in the runtime and in
lib/Semantics.
Differential Revision: https://reviews.llvm.org/D104100
This patch adds the 4th Fortran specific semantic check for the OpenMP
allocate directive: "If a list item has the SAVE attribute, is a common
block name, or is declared in the scope of a module, then only predefined
memory allocator parameters can be used in the allocator clause".
Code in this patch was based on code from https://reviews.llvm.org/D93549/new/.
Differential Revision: https://reviews.llvm.org/D102400
It's possible to have several USE statements for the same module that
have different mixes of rename clauses and ONLY clauses. The presence
of a rename cause has the effect of hiding a previously associated name,
and the presence of an ONLY clause forces the name to be visible even in
the presence of a rename.
I fixed this by keeping track of the names that appear on rename and ONLY
clauses. Then, when processing the USE association of a name, I check to see
if it previously appeared in a rename clause and not in a USE clause. If so, I
remove its USE associated symbol. Also, when USE associating all of the names
in a module, I do not USE associate names that have appeared in rename clauses.
I also added a test.
Differential Revision: https://reviews.llvm.org/D104130
Fix Flang build after addition of a new OpenMP clauses for a Clang
patch (D99459). Flang is using TableGen to generation the declaration
of clause checks and the new clause was missing a definiton.
It's possible to specify refer to an undefined derived type as the type of a
component of another derived type and then never define the type of the
component. We were not detecting this situation. To fix this, I
changed the value of isForwardReferenced_ in the symbol's
DerivedTypeDetails and checked for it when performing other derived type
checks.
I also had to record the fact that error messages were previously
emitted for the same problem in some cases so that I could avoid
duplicate messages.
I also added a test.
Differential Revision: https://reviews.llvm.org/D103714
Implement the following semantic check:
"A list item may not appear in a linear clause, unless it is the loop iteration variable."
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100224
To ensure that errors are emitted by CheckConformance and
its callers in all situations, it's necessary for the returned result
of that function to distinguish between three possible
outcomes: the arrays are known to conform at compilation time,
the arrays are known to not conform (and a message has been
produced), and an indeterminate result in which is not possible
to determine conformance. So convert CheckConformance's
result into an optional<bool>, and convert its confusing
Boolean flag arguments into a bit-set of named flags too.
Differential Revision: https://reviews.llvm.org/D103654
A recent change was made in https://reviews.llvm.org/D101482 to cope
with kind parameters. It had the side effect of generating some type
info symbols inside derived type scopes. Derived type scope symbols
are meant for components, and other/later compilation phases might
choke when finding compiler generated symbols there that are not
components.
This patch preserves the fix from D101482 while still generating the
symbols outside of derived type scopes.
Differential Revision: https://reviews.llvm.org/D103621
When a subroutine or function symbol is defined in an INTERFACE
block, it's okay if a symbol of the same name appears in a
scope between the global scope and the scope of the INTERFACE.
Differential Revision: https://reviews.llvm.org/D103580
Add some missing error messages, and permit the appearance
of EntityDetails symbols in dummy argument type characterization.
Differential Revision: https://reviews.llvm.org/D103576
When a procedure pointer with no interface is called by a
function reference, complain about the lack.
Differential Revision: https://reviews.llvm.org/D103573
In something like "ASSOCIATE(X=>T(1))", the "T(1)" is parsed
as a Variable because it looks like a function reference or
array reference; if it turns out to be a structure constructor,
which is something we can't know until we're able to attempt
generic interface resolution in semantics, the parse tree needs
to be fixed up by replacing the Variable with an Expr.
The compiler could already do this for putative function references
encapsulated as Exprs, so this patch moves some code around and
adds parser::Selector to the overloads of expression analysis.
Differential Revision: https://reviews.llvm.org/D103572
The constexpr-capable class evaluate::DynamicType represented
CHARACTER length only with a nullable pointer into the declared
parameters of types in the symbol table, which works fine for
anything with a declaration but turns out to not suffice to
describe the results of the ACHAR() and CHAR() intrinsic
functions. So extend DynamicType to also accommodate known
constant CHARACTER lengths, too; use them for ACHAR & CHAR;
clean up several use sites and fix regressions found in test.
Differential Revision: https://reviews.llvm.org/D103571
A procedure pointer is allowed to name a specific intrinsic function
from F'2018 table 16.2 as its interface, but not other intrinsic
procedures. Catch this error, and thereby also fix a crash resulting
from a failure later in compilation from failed characteristics;
while here, also catch the similar error with initializers.
Differential Revision: https://reviews.llvm.org/D103570
As a benign extension common to other Fortran compilers,
accept BOZ literals in array constructors w/o explicit
types, treating them as integers.
Differential Revision: https://reviews.llvm.org/D103569
In error recovery situations, the mappings from source locations
to scopes were failing in a way that tripped some asserts.
Specifically, FindPureProcedureContaining() wasn't coping well
when starting at the global scope. (And since the global scope
no longer has a source range, clean up the Semantics constructor
to avoid confusion.)
Differential Revision: https://reviews.llvm.org/D103567
It's possible to specify defined input/output procedures either as a
type-bound procedure of a derived type or as a defined-io-generic-spec. This
means that you can specify the same procedure in both mechanisms, which does
not cause problems. Alternatively, you can specify two different procedures to
be the defined input/output procedure for the same derived type. This is an
error. This change catches this error. The situation is slightly complicated
by parameterized derived types. Types with the same value for a KIND parameter
are treated as the same type while types with different KIND parameters are
treated as different types.
I implemented this check by adding a vector to keep track of which defined
input/output procedures had been seen for which derived types along with the
kind of procedure (read vs write and formatted vs unformatted). I also added
tests for non-parameterized types and types parameterized by KIND and LEN type
parameters.
I also removed an erroneous check from the code that creates runtime type
information.
Differential Revision: https://reviews.llvm.org/D103560
Each var argument to an attach or detach clause must be a
Fortran variable or array with the pointer or allocatable attribute.
This patch enforce this restruction.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D103279
This patch adds the following Fortran specific semantic checks for the OpenMP
Allocate directive.
1) A type parameter inquiry cannot appear in an ALLOCATE directive.
2) List items specified in the ALLOCATE directive must not have the ALLOCATABLE
attribute unless the directive is associated with an ALLOCATE statement.
Co-authored-by: Irina Dobrescu <irina.dobrescu@arm.com>
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102061
Defined input/output procedures are specified in 12.6.4.8. There are different
versions for read versus write and formatted versus unformatted, but they all
share the same basic set of dummy arguments.
I added several checking functions to check-declarations.cpp along with a test.
In the process of implementing this, I noticed and fixed a typo in
.../lib/Evaluate/characteristics.cpp.
Differential Revision: https://reviews.llvm.org/D103045
A recent fix for problems with ENTRY statement handling didn't
get the case of a procedure dummy argument on an ENTRY statement
in an executable part right; the code presumed that those dummy
arguments would be objects, not entities that might be objects or
procedures. Fix.
Differential Revision: https://reviews.llvm.org/D103098
Dummy arguments of ENTRY statements in execution parts were
not being created as objects, nor were they being implicitly
typed.
When the symbol corresponding to an alternate ENTRY point
already exists (by that name) due to having been referenced
in an earlier call, name resolution used to delete the extant
symbol. This isn't the right thing to do -- the extant
symbol will be pointed to by parser::Name nodes in the parse
tree while no longer being part of any Scope.
Differential Review: https://reviews.llvm.org/D102948
This patch implements the following semantic check:
```
A master region may not be closely nested inside a work-sharing, loop, atomic, task, or taskloop region.
```
Adds a test case and also modifies a couple of existing test cases to include the check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100228
Add overloads to AsGenericExpr() in Evaluate/tools.h to take care
of wrapping an untyped DataRef or bare Symbol in a typed Designator
wrapped up in a generic Expr<SomeType>. Use the new overloads to
replace a few instances of code that was calling TypedWrapper<>()
with a dynamic type.
This new tool will be useful in lowering to drive some code that
works with typed expressions (viz., list-directed I/O list items)
when starting with only a bare Symbol (viz., NAMELIST).
Differential Revision: https://reviews.llvm.org/D102352
When producing the runtime type information for a component of a derived type
that had a LEN type parameter, we were not allowing a KIND parameter of the
derived type. This was causing one of the NAG correctness tests to fail
(.../hibiya/d5.f90).
I added a test to our own test suite to check for this.
Also, I fixed a typo in .../module/__fortran_type_info.f90.
I allowed KIND type parameters to be used for the declarations of components
that use LEN parameters by constant folding the value of the LEN parameter. To
make the constant folding work, I had to put the semantics::DerivedTypeSpec of
the associated derived type into the folding context. To get this
semantics::DerivedTypeSpec, I changed the value of the semantics::Scope object
that was passed to DescribeComponent() to be the derived type scope rather than
the containing non-derived type scope.
This scope change, in turn, caused differences in the symbol table output that
is checked in typeinfo01.f90. Most of these differences were in the order that
the symbols appeared in the dump. But one of them changed one of the values
from "CHARACTER(2_8,1)" to "CHARACTER(1_8,1)". I'm not sure if these changes
are significant. Please verify that the results of this test are still valid.
Also, I wonder if there are other situations in this code where we should be
folding constants. For example, what if the field of a component has a
component whose type is a PDT with a LEN type parameter, and the component's
declaration depends on the KIND type parameter of the current PDT. Here's an
example:
type string(stringkind)
integer,kind :: stringkind
character(stringkind) :: value
end type string
type outer(kindparam)
integer,kind :: kindparam
type(string(kindparam)) :: field
end type outer
I don't understand the code or what it's trying to accomplish well enough to
figure out if such cases are correctly handled by my new code.
Differential Revision: https://reviews.llvm.org/D101482
We were not correctly handling structure constructors that had forward
references to parameterized derived types. I harvested the code that checks
for forward references that was used during analysis of function call
expressions and called it from there and also called it during the
analysis of structure constructors.
I also added a test that will produce an internal error without this change.
Differential Revision: https://reviews.llvm.org/D101330
We were not checking that attributes that are supposed to be specific to
dummy arguments were not being used for local entities. I added the checks
along with tests for them.
After implementing these new checks, I found that one of the tests in
separate-mp02.f90 was erroneous, and I fixed it.
Differential Revision: https://reviews.llvm.org/D101126
Andrezj W. @ Arm discovered that the runtime derived type table
building code in semantics was detecting fatal errors in the tests
that the f18 driver wasn't printing. This patch fixes f18 so that
these messages are printed; however, the messages were not valid user
errors, and the rest of this patch fixes them up.
There were two sources of the bogus errors. One was that the runtime
derived type information table builder was calculating the shapes of
allocatable and pointer array components in derived types, and then
complaining that they weren't constant or LEN parameter values, which
of course they couldn't be since they have to have deferred shapes
and those bounds were expressions like LBOUND(component,dim=1).
The second was that f18 was forwarding the actual LEN type parameter
expressions of a type instantiation too far into the uses of those
parameters in various expressions in the declarations of components;
when an actual LEN type parameter is not a constant value, it needs
to remain a "bare" type parameter inquiry so that it will be lowered
to a descriptor inquiry and acquire a captured expression value.
Fixing this up properly involved: moving some code into new utility
function templates in Evaluate/tools.h, tweaking the rewriting of
conversions in expression folding to elide needless integer kind
conversions of type parameter inquiries, making type parameter
inquiry folding *not* replace bare LEN type parameters with
non-constant actual parameter values, and cleaning up some
altered test results.
Differential Revision: https://reviews.llvm.org/D101001
This patch adds semantic checks for the General Restrictions of the
Allocate Directive.
Since the requires directive is not yet implemented in Flang, the
restriction:
```
allocate directives that appear in a target region must
specify an allocator clause unless a requires directive with the
dynamic_allocators clause is present in the same compilation unit
```
will need to be updated at a later time.
A different patch will be made with the Fortran specific restrictions of
this directive.
I have used the code from https://reviews.llvm.org/D89395 for the
CheckObjectListStructure function.
Co-authored-by: Isaac Perry <isaac.perry@arm.com>
Reviewed By: clementval, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91159
We were erroneously not taking into account the constant values of LEN type
parameters of parameterized derived types when checking for argument
compatibility. The required checks are identical to those for assignment
compatibility. Since argument compatibility is checked in .../lib/Evaluate and
assignment compatibility is checked in .../lib/Semantics, I moved the common
code into .../lib/Evaluate/tools.cpp and changed the assignment compatibility
checking code to call it.
After implementing these new checks, tests in resolve53.f90 were failing
because the tests were erroneous. I fixed these tests and added new tests
to call03.f90 to test argument passing of parameterized derived types more
completely.
Differential Revision: https://reviews.llvm.org/D100989
We were erroneously emitting error messages for assignments of derived types
where the associated objects were instantiated with non-constant LEN type
parameters.
I fixed this by adding the member function MightBeAssignmentCompatibleWith() to
the class DerivedTypeSpec and calling it to determine whether it's possible
that objects of parameterized derived types can be assigned to each other. Its
implementation first compares the uninstantiated values of the types. If they
are equal, it then compares the values of the constant instantiated type
parameters.
I added tests to assign04.f90 to exercise this new code.
Differential Revision: https://reviews.llvm.org/D100868
An empty NAME= should mean that there is no C binding, not the
binding that would result from BIND(C) without a NAME=.
See 18.10.2p2.
Differential Revision: https://reviews.llvm.org/D100494
We were not instantiating procedure pointer components. If the instantiation
contained errors, we were not reporting them. This resulted in internal errors
in later processing.
I fixed this by adding code in .../lib/Semantics/type.cpp in
InstantiateComponent() to handle a component with ProcEntityDetails. I also
added several tests for various good and bad instantiations of procedure
pointer components.
Differential Revision: https://reviews.llvm.org/D100341
F18 supports the standard intrinsic function SELECTED_REAL_KIND
but not its synonym in the standard module IEEE_ARITHMETIC
named IEEE_SELECTED_REAL_KIND until this patch.
Differential Revision: https://reviews.llvm.org/D100066
For pernicious test cases with explicit non-constant actual
type parameter expressions in components, e.g.:
type :: t(k)
integer, kind :: k
type(t(k+1)), pointer :: p
end type
we should detect the infinite recursion and complain rather
than looping until the stack overflows.
Differential Revision: https://reviews.llvm.org/D100065
Check for two or more symbols that define a data object or entry point
with the same interoperable BIND(C) name.
Differential Revision: https://reviews.llvm.org/D100067
We were not folding type parameter inquiries for the form 'var%typeParam'
where 'typeParam' was a KIND or LEN type parameter of a derived type and 'var'
was a designator of the derived type. I fixed this by adding code to the
function 'FoldOperation()' for 'TypeParamInquiry's to handle this case. I also
cleaned up the code for the case where there is no designator.
In order to make the error messages correctly refer to both the points of
declaration and instantiation, I needed to add an argument to the function
'InstantiateIntrinsicType()' for the location of the instantiation.
I also changed the formatting of 'TypeParamInquiry' to correctly format this
case. I also added tests for both KIND and LEN type parameter inquiries in
resolve104.f90.
Making these changes revealed an error in resolve89.f90 and caused one of the
error messages in assign04.f90 to be different.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D99892
We were not folding type parameter inquiries for the form 'var%typeParam'
where 'typeParam' was a KIND or LEN type parameter of a derived type and 'var'
was a designator of the derived type. I fixed this by adding code to the
function 'FoldOperation()' for 'TypeParamInquiry's to handle this case. I also
cleaned up the code for the case where there is no designator.
In order to make the error messages correctly refer to both the points of
declaration and instantiation, I needed to add an argument to the function
'InstantiateIntrinsicType()' for the location of the instantiation.
I also changed the formatting of 'TypeParamInquiry' to correctly format this
case. I also added tests for both KIND and LEN type parameter inquiries in
resolve104.f90.
Making these changes revealed an error in resolve89.f90 and caused one of the
error messages in assign04.f90 to be different.
Differential Revision: https://reviews.llvm.org/D99892
f18 was emitting a bogus error message about the lack of a TARGET
attribute when a pointer was initialized with a component of a
variable that was a legitimate TARGET.
Differential Revision: https://reviews.llvm.org/D99665
When writing tests for a previous problem, I ran across situations where the
compiler was failing calls to CHECK(). In these situations, the compiler had
inconsistent semantic information because the programs were erroneous. This
inconsistent information was causing the calls to CHECK().
I fixed this by avoiding the code that ended up making the failed calls to
CHECK() and making sure that we were only avoiding these situations when the
associated symbols were erroneous.
I also added tests that would cause the calls to CHECK() without these changes.
Differential Revision: https://reviews.llvm.org/D99342
Binding labels start as expressions but they have to evaluate to
constant character of default kind, so they can be represented as an
std::string. Leading and trailing blanks have to be removed, so the
folded expression isn't exactly right anyway.
So all BIND(C) symbols now have a string binding label, either the
default or user-supplied one. This is recorded in the .mod file.
Add WithBindName mix-in for details classes that can have a binding
label so that they are all consistent. Add GetBindName() and
SetBindName() member functions to Symbol.
Add tests that verifies that leading and trailing blanks are ignored
in binding labels and that the default label is folded to lower case.
Differential Revision: https://reviews.llvm.org/D99208
Binding labels start as expressions but they have to evaluate to
constant character of default kind, so they can be represented as an
std::string. Leading and trailing blanks have to be removed, so the
folded expression isn't exactly right anyway.
So all BIND(C) symbols now have a string binding label, either the
default or user-supplied one. This is recorded in the .mod file.
Add WithBindName mix-in for details classes that can have a binding
label so that they are all consistent. Add GetBindName() and
SetBindName() member functions to Symbol.
Add tests that verifies that leading and trailing blanks are ignored
in binding labels and that the default label is folded to lower case.
Differential Revision: https://reviews.llvm.org/D99208
When writing tests for a previous problem, I ran across situations where we
were not producing error messages for declarations of specific procedures of
generic interfaces where every other compiler I tested (except nvfotran) did.
I added a check to CheckExtantExternal() and renamed it since it now checks for
erroneous extant symbols generally.
I also removed a call to this function from processing for ENTRY statements,
since it seemed unnecessary and its presence caused bogus error messages.
I also added some tests for erroneous declarations where we were not producing
error messages.
Differential Revision: https://reviews.llvm.org/D99111
If you specify a specific procedure of a generic interface that has the same
name as both the generic interface and a preceding derived type, the compiler
would fail an internal call to CHECK(). I fixed this by testing for this
situation when processing specific procedures. I also added a test that will
cause the call to CHECK() to fail without this new code.
Differential Revision: https://reviews.llvm.org/D99085
This patch fixes a bug to allow ordered construct within a non-worksharing loop, also adds more sema checks.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D98733
Replace semantics::SymbolSet with alternatives that clarify
whether the set should order its contents by source position
or not. This matters because positionally-ordered sets must
not be used for Symbols that might be subjected to name
replacement during name resolution, and address-ordered
sets must not be used (without sorting) in circumstances
where the order of their contents affects the output of the
compiler.
All set<> and map<> instances in the compiler that are keyed
by Symbols now have explicit Compare types in their template
instantiations. Symbol::operator< is no more.
Differential Revision: https://reviews.llvm.org/D98878
Added basic parsing/sema/serialization support for interop directive.
Support for the 'init' clause.
Differential Revision: https://reviews.llvm.org/D98558
1. Generate the mapping for clauses between the parser class and the
corresponding clause kind for OpenMP and OpenACC using tablegen.
2. Add a common function to get the OmpObjectList from the OpenMP
clauses to avoid repetition of code.
Reviewed by: Kiranchandramohan @kiranchandramohan , Valentin Clement @clementval
Differential Revision: https://reviews.llvm.org/D98603
In parser::AllCookedSources, implement a map from CharBlocks to
the CookedSource instances that they cover. This permits a fast
Find() operation based on std::map::equal_range to map a CharBlock
to its enclosing CookedSource instance.
Add a creation order number to each CookedSource. This allows
AllCookedSources to provide a Precedes(x,y) predicate that is a
true source stream ordering between two CharBlocks -- x is less
than y if it is in an earlier CookedSource, or in the same
CookedSource at an earlier position.
Add a reference to the singleton SemanticsContext to each Scope.
All of this allows operator< to be implemented on Symbols by
means of a true source ordering. From a Symbol, we get to
its Scope, then to the SemanticsContext, and then use its
AllCookedSources reference to call Precedes().
Differential Revision: https://reviews.llvm.org/D98743
`parser::AllocateObject` and `parser::PointerObject` can be represented
as typed expressions once analyzed. This simplifies the work for parse-tree
consumers that work with typed expressions to deal with allocatable and
pointer objects such as lowering.
This change also makes it easier to add typedExpr in the future by
automatically handling nodes that have this member when possible.
Changes:
- Add a `mutable TypedExpr typedExpr` field to `parser::PointerObject` and `parser::AllocateObject`.
- Add a `parser::HasTypedExpr<T>` helper to better share code relating to typedExpr in the parse tree.
- Add hooks in `semantics::ExprChecker` for AllocateObject and PointerObject nodes, and use
ExprOrVariable on it to analyze and set the tyedExpr field during
expression analysis. This required adding overloads for `AssumedTypeDummy`.
- Update check-nullify.cpp and check-deallocate.cpp to not re-analyze the StructureComponent but to
use the typedExpr field instead.
- Update dump/unparse to use HasTypedExpr and use the typedExpr when there is one.
Differential Revision: https://reviews.llvm.org/D98256
An older version of a function (Fortran::semantics::FindFunctionResult) was
left in flang/lib/Semantics/tools.cpp, and this breaks the static library
build due to a conflict with the intended final version in another
file and library. Remove the old code.
Differential Revision: https://reviews.llvm.org/D98568
Fortran permits a reference to a function whose result is a pointer
to be used as a definable variable in any context where a
designator could appear. This patch wrings out remaining bugs
with such usage and adds more testing.
The utility predicate IsProcedurePointer(expr) had a misleading
name which has been corrected to IsProcedurePointerTarget(expr).
Differential Revision: https://reviews.llvm.org/D98555
If you specify a type-bound procedure with an alternate return, there
will be no symbol associated with that dummy argument. In such cases,
the compiler's list of dummy arguments will contain a nullptr. In our
analysis of the PASS arguments of type-bound procedures, we were
assuming that all dummy arguments had non-null symbols associated with
them and were using that assumption to get the name of the dummy
argument. This caused the compiler to try to dereference a nullptr.
I fixed this by explicitly checking for a nullptr and, in such cases, emitting
an error message. I also added tests that contain type-bound procedures with
alternate returns in both legal and illegal constructs to ensure that semantic
analysis is working for them.
Differential Revision: https://reviews.llvm.org/D98430
You can define a base type with a type-bound procedure which is erroneously
missing a NOPASS attribute and then define another type that extends the base
type and overrides the erroneous procedure. In this case, when we perform
semantic checking on the overriding procedure, we verify the "pass index" of
the overriding procedure. The attempt to get the procedure's pass index fails
a call to CHECK().
I fixed this by calling SetError() on the symbol of the overridden procedure in
the base type. Then, I check HasError() before executing the code that invokes
the failing call to CHECK(). I also added a test that will cause the compiler
to fail the call to CHECK() without this change.
Differential Revision: https://reviews.llvm.org/D98355
When we have a subprogram that has been determined to contain errors, we do not
perform name resolution on its execution part. In this case, if the subprogram
contains a NULLIFY statement, the parser::Name of a pointer object in a NULLIFY
statement will not have had name resolution performed on it. Thus, its symbol
will not have been set. Later, however, we do semantic checking on the NULLIFY
statement. The code that did this assumed that the parser::Name of the
pointer object was non-null.
I fixed this by just removing the null pointer check for the "symbol" member of
the "parser::Name" of the pointer object when doing semantic checking for
NULLIFY statements. I also added a test that will make the compiler crash
without this change.
Differential Revision: https://reviews.llvm.org/D98184
We were allowing procedures with the MODULE prefix to be declared at the global
scope. This is prohibited by C1547 and was causing an internal check of the
compiler to fail.
I fixed this by adding a check. I also added a test that would trigger a crash
without this change.
Differential Revision: https://reviews.llvm.org/D97875
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was defined using
the location of the name of the procedure. But the location of the procedure
name was being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous symbols.
I fixed this by changing SymbolSet to be an unordered set that uses the
contents of the name of the symbol as the basis for its hash function. This
works because the contents of the name of the symbol is preserved by
ReplaceName() even though its location changes.
I also fixed the error message used when reporting recursively defined
dummy procedure arguments by removing extra apostrophes and sorting the
list of symbols.
I also added tests that will crash the compiler without this change.
Note that the "<" operator is used in other contexts, for example, in the map
of characterized procedures, maps of items in equivalence sets, maps of
structure constructor values, ... All of these situations happen after name
resolution has been completed and all calls to ReplaceName() have already
happened and thus are not subject to the problem I ran into when ReplaceName()
was called when processing procedure entities.
Note also that the implementation of the "<" operator uses the relative
location in the cooked character stream as the basis of its implementation.
This is potentially problematic when symbols from diffent compilation units
(for example symbols originating in .mod files) are put into the same map since
their names will appear in two different source streams which may not be
allocated in the same relative positions in memory. But I was unable to create
a test that caused a problem. Using a direct comparison of the content of the
name of the symbol in the "<" operator has problems. Symbols in enclosing or
parallel scopes can have the same name. Also using the location of the symbol
in the cooked character stream has the advantage that it preserves the the
order of the symbols in a structure constructor constant, which makes matching
the values with the symbols relatively easy.
This patch supersedes D97749.
Differential Revision: https://reviews.llvm.org/D97774
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was defined using
the location of the name of the procedure. But the location of the procedure
name was being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous symbols.
I fixed this by changing SymbolSet to be an unordered set that uses the
contents of the name of the symbol as the basis for its hash function. This
works because the contents of the name of the symbol is preserved by
ReplaceName() even though its location changes.
I also fixed the error message used when reporting recursively defined
dummy procedure arguments by removing extra apostrophes and sorting the
list of symbols.
I also added tests that will crash the compiler without this change.
Note that the "<" operator is used in other contexts, for example, in the map
of characterized procedures, maps of items in equivalence sets, maps of
structure constructor values, ... All of these situations happen after name
resolution has been completed and all calls to ReplaceName() have already
happened and thus are not subject to the problem I ran into when ReplaceName()
was called when processing procedure entities.
Note also that the implementation of the "<" operator uses the relative
location in the cooked character stream as the basis of its implementation.
This is potentially problematic when symbols from diffent compilation units
(for example symbols originating in .mod files) are put into the same map since
their names will appear in two different source streams which may not be
allocated in the same relative positions in memory. But I was unable to create
a test that caused a problem. Using a direct comparison of the content of the
name of the symbol in the "<" operator has problems. Symbols in enclosing or
parallel scopes can have the same name. Also using the location of the symbol
in the cooked character stream has the advantage that it preserves the the
order of the symbols in a structure constructor constant, which makes matching
the values with the symbols relatively easy.
This patch supersedes D97749.
Differential Revision: https://reviews.llvm.org/D97774
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was defined using
the location of the name of the procedure. But the location of the procedure
name was being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous symbols.
I fixed this by changing SymbolSet to be an unordered set that uses the
contents of the name of the symbol as the basis for its hash function. This
works because the contents of the name of the symbol is preserved by
ReplaceName() even though its location changes.
I also fixed the error message used when reporting recursively defined dummy
procedure arguments.
I also added tests that will crash the compiler without this change.
Note that the "<" operator is used in other contexts, for example, in the map
of characterized procedures, maps of items in equivalence sets, maps of
structure constructor values, ... All of these situations happen after name
resolution has been completed and all calls to ReplaceName() have already
happened and thus are not subject to the problem I ran into when ReplaceName()
was called when processing procedure entities.
Note also that the implementation of the "<" operator uses the relative
location in the cooked character stream as the basis of its implementation.
This is potentially problematic when symbols from diffent compilation units
(for example symbols originating in .mod files) are put into the same map since
their names will appear in two different source streams which may not be
allocated in the same relative positions in memory. But I was unable to create
a test that caused a problem. Using a direct comparison of the content of the
name of the symbol in the "<" operator has problems. Symbols in enclosing or
parallel scopes can have the same name. Also using the location of the symbol
in the cooked character stream has the advantage that it preserves the the
order of the symbols in a structure constructor constant, which makes matching
the values with the symbols relatively easy.
This change supersedes D97201.
Differential Revision: https://reviews.llvm.org/D97749
Semantic checks for the following OpenMP 4.5 clauses.
1. 2.15.4.2 - Copyprivate clause
2. 2.15.3.4 - Firstprivate clause
3. 2.15.3.5 - Lastprivate clause
Add related test cases and resolve test cases marked as XFAIL.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91920
This reverts commit 07de0846a5.
The original patch has caused 6 out 8 of Flang's public buildbots to
fail. As I'm not sure what the fix should be, I'm reverting this for
now. Please see https://reviews.llvm.org/D97201 for more context and
discussion.
It's possible to define a procedure whose interface depends on a procedure
which has an interface that depends on the original procedure. Such a circular
definition was causing the compiler to fall into an infinite loop when
resolving the name of the second procedure. It's also possible to create
circular dependency chains of more than two procedures.
I fixed this by adding the function HasCycle() to the class DeclarationVisitor
and calling it from DeclareProcEntity() to detect procedures with such
circularly defined interfaces. I marked the associated symbols of such
procedures by calling SetError() on them. When processing subsequent
procedures, I called HasError() before attempting to analyze their interfaces.
Unfortunately, this did not work.
With help from Tim, we determined that the SymbolSet used to track the
erroneous symbols was instantiated using a "<" operator which was
defined using the name of the procedure. But the procedure name was
being changed by a call to ReplaceName() between the times that the
calls to SetError() and HasError() were made. This caused HasError() to
incorrectly report that a symbol was not in the set of erroneous
symbols. I fixed this by making SymbolSet be an ordered set, which does
not use the "<" operator.
I also added tests that will crash the compiler without this change.
And I fixed the formatting on an error message from a previous update.
Differential Revision: https://reviews.llvm.org/D97201
Most Fortran compilers accept the following benign extension,
and it appears in some applications:
SUBROUTINE FOO(A,N)
IMPLICIT NONE
REAL A(N) ! N is used before being typed
INTEGER N
END
Allow it in f18 only for default integer scalar dummy arguments.
Differential Revesion: https://reviews.llvm.org/D96982
Fortran 2018 explicitly permits an ignored type declaration
for the result of a generic intrinsic function. See the comment
added to Semantics/expression.cpp for an explanation of why this
is somewhat dangerous and worthy of a warning.
Differential Revision: https://reviews.llvm.org/D96879
The intrinsic procedure table properly classify the various
intrinsics, but the PURE and ELEMENTAL attributes that these
classifications imply don't always make it to the utility
predicates that test symbols for them, leading to spurious
error messages in some contexts. So set those attribute flags
as appropriate in name resolution, using a new function to
isolate the tests.
An alternate solution, in which the predicates would query
the intrinsic procedure table for these attributes on demand,
was something I also tried, so that this information could
come directly from an authoritative source; but it would have
required references to the intrinsic table to be passed along
on too many seemingly unrelated APIs and ended up looking messy.
Several symbol table tests needed to have their expected outputs
augmented with the PURE and ELEMENTAL flags. Some bogus messages
that were flagged as such in test/Semantics/doconcurrent01.f90 were
removed, since they are now correctly not emitted.
Differential Revision: https://reviews.llvm.org/D96878
Fix Flang build after addition of a new OpenMP clauses for a clang patch (D76342).
Flang is using TableGen to generation the declaration of clause checks and the new clause
was missing a definiton.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D96808
Implementation of Do loop iteration variable check, Do while loop check, Do loop cycle restrictions.
Also to check whether the ordered clause is present on the loop construct if any ordered region ever
binds to a loop region arising from the loop construct.
Files:
check-omp-structure.h
check-omp-structure.cpp
resolve-directives.cpp
Testcases:
omp-do06-positivecases.f90
omp-do06.f90
omp-do08.f90
omp-do09.f90
omp-do10.f90
omp-do11.f90
omp-do12.f90
omp-do13.f90
omp-do14.f90
omp-do15.f90
omp-do16.f90
omp-do17.f90
Reviewed by: Kiran Chandramohan @kiranchandramohan , Valentin Clement @clementval
Differential Revision: https://reviews.llvm.org/D92732
Instead of using a message attachment with further details,
emit the details as part of a single message.
Differential Revision: https://reviews.llvm.org/D96465
When accessing a specific procedure of a USE-associated generic
interface, we need to allow for the case in which that specific
procedure has the same name as the generic when testing for
its availability in the current scope.
Differential Revision: https://reviews.llvm.org/D96467
Some state in name resolution is stored in the DeclarationVisitor
instance and processed at the end of the specification part.
This state needs to accommodate nested specification parts, namely
the ones that can be nested in a subroutine or function interface
body.
Differential Revision: https://reviews.llvm.org/D96466
Split up MeasureSizeInBytes() so that array element sizes can be
calculated accurately; use the new API in some places where
DynamicType::MeasureSizeInBytes() was being used but the new
API performs better due to TypeAndShape having precise CHARACTER
length information.
Differential Revision: https://reviews.llvm.org/D95897
This patch is a follow up to D94821 to ensure the correct behavior of the
general directive structure checker.
This patch add the generation of the Enter function declaration for clauses in
the TableGen backend.
This helps to ensure each clauses declared in the TableGen file has at least
a basic check.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D95108
Analyze the shape of the result of TRANSFER(ptr,array) correctly
when "ptr" is an array of deferred shape. Fixing this bug led to
some refactoring and concentration of common code in TypeAndShape
member functions with code in general shape and character length
analysis, and this led to some regression test failures that have
all been cleaned up.
Differential Revision: https://reviews.llvm.org/D95744
Legacy Fortran implementations support an alternative form of the
PARAMETER statement; it differs syntactically from the standard's
PARAMETER statement by lacking parentheses, and semantically by
using the type and shape of the initialization expression to define
the attributes of the named constant. (GNU Fortran gets that part
wrong; Intel Fortran and nvfortran have full support.)
This patch disables the old style PARAMETER statement by default, as
it is syntactically ambiguous with conforming assignment statements;
adds a new "-falternative-parameter-statement" option to enable it;
and implements it correctly when enabled.
Fixes https://bugs.llvm.org/show_bug.cgi?id=48774, in which a user
tripped over the syntactic ambiguity.
Differential Revision: https://reviews.llvm.org/D95697
* Remove an unimplemented and unused member function declaration
* Remove a misleading comment about an unrelated constraint number
* Fix a comment
* Add f18 crash message to "flang" driver script
Differential Revision: https://reviews.llvm.org/D95180