Summary:
This is the second part of fixing bug 24848 https://llvm.org/bugs/show_bug.cgi?id=24848.
If both operands of a comparison have range metadata, they should be used to constant fold the comparison.
Reviewers: sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13177
llvm-svn: 248650
Summary:
If the trip count of a specific backedge is `N`, then we know that
backedge is effectively guarded by the condition `{0,+,1} u< N`. This
change teaches SCEV to use this condition to prove things in
`isLoopBackedgeGuardedByCond`.
Depends on D12948
Depends on D12949
The original checkin, r248608 had to be backed out due to an issue with
a ObjCXX unit test. That issue is now fixed, so re-landing.
Reviewers: atrick, reames, majnemer, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12950
llvm-svn: 248638
Summary:
This change teaches SCEV's `isImpliedCond` two new identities:
A u< B u< -C => (A + C) u< (B + C)
A s< B s< INT_MIN - C => (A + C) s< (B + C)
While these are useful on their own, they're really intended to support
D12950.
The original checkin, r248606 had to be backed out due to an issue with
a ObjCXX unit test. That issue is now fixed, so re-landing.
Reviewers: atrick, reames, majnemer, nlewycky, hfinkel
Subscribers: aadg, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12948
llvm-svn: 248637
This is a fix for PR22723:
https://llvm.org/bugs/show_bug.cgi?id=22723
My first attempt at this was to change what I thought was the root problem:
xor (zext i1 X to i32), 1 --> zext (xor i1 X, true) to i32
...but we create the opposite pattern in InstCombiner::visitZExt(), so infinite loop!
My next idea was to fix the matchIfNot() implementation in PatternMatch, but that would
mean potentially returning a different size for the match than what was input. I think
this would require all users of m_Not to check the size of the returned match, so I
abandoned that idea.
I settled on just fixing the exact case presented in the PR. This patch does allow the
2 functions in PR22723 to compile identically (x86):
bool test(bool x, bool y) { return !x | !y; }
bool test(bool x, bool y) { return !x || !y; }
...
andb %sil, %dil
xorb $1, %dil
movb %dil, %al
retq
Differential Revision: http://reviews.llvm.org/D12705
llvm-svn: 248634
BranchProbability now is represented by its numerator and denominator in uint32_t type. This patch changes this representation into a fixed point that is represented by the numerator in uint32_t type and a constant denominator 1<<31. This is quite similar to the representation of BlockMass in BlockFrequencyInfoImpl.h. There are several pros and cons of this change:
Pros:
1. It uses only a half space of the current one.
2. Some operations are much faster like plus, subtraction, comparison, and scaling by an integer.
Cons:
1. Constructing a probability using arbitrary numerator and denominator needs additional calculations.
2. It is a little less precise than before as we use a fixed denominator. For example, 1 - 1/3 may not be exactly identical to 1 / 3 (this will lead to many BranchProbability unit test failures). This should not matter when we only use it for branch probability. If we use it like a rational value for some precise calculations we may need another construct like ValueRatio.
One important reason for this change is that we propose to store branch probabilities instead of edge weights in MachineBasicBlock. We also want clients to use probability instead of weight when adding successors to a MBB. The current BranchProbability has more space which may be a concern.
Differential revision: http://reviews.llvm.org/D12603
llvm-svn: 248633
Summary:
If the trip count of a specific backedge is `N`, then we know that
backedge is effectively guarded by the condition `{0,+,1} u< N`. This
change teaches SCEV to use this condition to prove things in
`isLoopBackedgeGuardedByCond`.
Depends on D12948
Depends on D12949
Reviewers: atrick, reames, majnemer, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12950
llvm-svn: 248608
Summary:
This change teaches SCEV's `isImpliedCond` two new identities:
A u< B u< -C => (A + C) u< (B + C)
A s< B s< INT_MIN - C => (A + C) s< (B + C)
While these are useful on their own, they're really intended to support
D12950.
Reviewers: atrick, reames, majnemer, nlewycky, hfinkel
Subscribers: aadg, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12948
llvm-svn: 248606
...because that's what the cost model was intended to do.
As discussed in D12882, this fix has a temporary unintended consequence for
SimplifyCFG: it causes us to not speculate an fdiv. However, two wrongs make
PR24818 right, and two wrongs make PR24343 act right even though it's really
still wrong.
I intend to correct SimplifyCFG and add to CodeGenPrepare to account for this
cost model change and preserve the righteousness for the bug report cases.
https://llvm.org/bugs/show_bug.cgi?id=24818https://llvm.org/bugs/show_bug.cgi?id=24343
Differential Revision: http://reviews.llvm.org/D12882
llvm-svn: 248439
Patch by: simoncook
Unlike BitCasts, AddrSpaceCasts do not always produce an output the same size as its input, which was previously assumed. This fixes cases where two address spaces do not have the same size pointer, as an assertion failure would occur when trying to prove deferenceability. LoopUnswitch is used in the particular test, but LICM also exhibits the same problem.
Differential Revision: http://reviews.llvm.org/D13008
llvm-svn: 248422
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
Summary:
This is the first part of fixing bug 24848 https://llvm.org/bugs/show_bug.cgi?id=24848.
When range metadata is provided, it should be used to constant fold comparisons with constant values.
Reviewers: sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12988
llvm-svn: 248402
This changes the behavior of AddAligntmentAssumptions to match its
comment. I.e, prove the asserted alignment in the context of the caller,
not the callee.
Thanks to Mehdi Amini for seeing the issue here! Also to Artur Pilipenko
who also saw a fix for the issue.
rdar://22521387
Differential Revision: http://reviews.llvm.org/D12997
llvm-svn: 248390
Invoking a function which returns an aggregate can sometimes be
transformed to return a scalar value. However, this means that we need
to create an insertvalue instruction(s) to recreate the correct
aggregate type. We achieved this by inserting an insertvalue
instruction at the invoke's normal successor. However, this is not
feasible if the normal successor uses the invoke's return value inside a
PHI node.
Instead, split the edge between the invoke and the unwind successor and
create the insertvalue instruction in the new basic block. The new
basic block's successor will be the old invoke successor which leaves
us with IR which is well behaved.
This fixes PR24906.
llvm-svn: 248387
This change allows dead store elimination to remove zero and null stores into memory freshly allocated with calloc-like function.
Differential Revision: http://reviews.llvm.org/D13021
llvm-svn: 248374
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
Apart from checking that GlobalVariable is a constant, we should check
that it's not a weak constant, in which case we can't propagate its
value.
llvm-svn: 248327
ARM counterpart to r248291:
In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.
Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.
Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".
Differential Revision: http://reviews.llvm.org/D13033
llvm-svn: 248294
We know that an argmemonly function can only access memory pointed to by it's pointer arguments. Rather than needing to consider all possible stores as aliasing (as we do for a readonly function), we can only consider the aliasing of the pointer arguments.
Note that this change only addresses hoisting. I'm thinking about how to address speculation safety as well, but that will be a different change.
FYI, argmemonly disallows accessing memory through non-pointer typed arguments.
Differential Revision: http://reviews.llvm.org/D12771
llvm-svn: 248220
We're currently losing any fast-math flags when synthesizing fcmps for
min/max reductions. In LV, make sure we copy over the scalar inst's
flags. In LoopUtils, we know we only ever match patterns with
hasUnsafeAlgebra, so apply that to any synthesized ops.
llvm-svn: 248201
Because -indvars widens induction variables through arithmetic,
`NeverNegative` cannot be a property of the `WidenIV` (a `WidenIV`
manages information for all transitive uses of an IV being widened,
including uses of `-1 * IV`). Instead it must live on `NarrowIVDefUse`
which manages information for a specific def-use edge in the transitive
use list of an induction variable.
This change also adds a test case that demonstrates the problem with
r248045.
llvm-svn: 248107
Summary:
If an induction variable is provably non-negative, its sign extension is
equal to its zero extension. This means narrow uses like
icmp slt iNarrow %indvar, %rhs
can be widened into
icmp slt iWide zext(%indvar), sext(%rhs)
Reviewers: atrick, mcrosier, hfinkel
Subscribers: hfinkel, reames, llvm-commits
Differential Revision: http://reviews.llvm.org/D12745
llvm-svn: 248045
Currently LazyValueInfo will report only alloca's as having nonnull range.
For loads with !nonnull metadata it will bailout with no additional information.
Same is true for calls returning nonnull pointers.
This change extends LazyValueInfo to handle additional nonnull instructions.
Differential Revision: http://reviews.llvm.org/D12932
llvm-svn: 247985
The SSE4A instructions EXTRQ/INSERTQ only use the lower 64-bits (or less) for many of their input vector operands and all of them have undefined upper 64-bits results.
Differential Revision: http://reviews.llvm.org/D12680
llvm-svn: 247934
This test uses a gcov file generated in a little-endian host. The gcov
reader does not allow different endianness, so the test fails on big
endian hosts.
XFAILing for now.
llvm-svn: 247920
This adds enough machinery to support reading simple GCC AutoFDO
profiles. It now supports reading flat profiles (no function calls).
Subsequent patches will add support for:
- Inlined calls (in particular, the inline call stack is not traversed
to accumulate samples).
- Working sets and modules. These are used mostly for GCC's LIPO
optimizations, so they're not needed in LLVM atm. I'm not sure that
we will ever need them. For now, I've if0'd around the calls.
The patch also adds support in GCOV.h for gcov version V704 (generated
by GCC's profile conversion tool).
llvm-svn: 247874
Summary:
`signum(x)` is sometimes implemented as `(x >> 63) | (-x >>> 63)` (for
an `i64` `x`). This change adds a matcher for that pattern, and an
instcombine rule to optimize `signum(x) s< 1`.
Later, we can also consider optimizing:
icmp slt signum(x), 0 --> icmp slt x, 0
icmp sle signum(x), 1 --> true
etc.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12703
llvm-svn: 247846
Clang now passes the adjectives as an argument to catchpad.
Getting the CatchObj working is simply a matter of threading another
static alloca through codegen, first as an alloca, then as a frame
index, and finally as a frame offset.
llvm-svn: 247844
When building LLVM as a (potentially dynamic) library that can be linked against
by multiple compilers, the default triple is not really meaningful.
We allow to explicitely set it to an empty string when configuring LLVM.
In this case, said "target independent" tests in the test suite that are using
the default triple are disabled by matching the newly available feature
"default_triple".
Reviewers: probinson, echristo
Differential Revision: http://reviews.llvm.org/D12660
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 247775
We only checked that a global is initialized with constants, which is
incorrect. We should be checking that GlobalVariable *is* a constant,
not just initialized with it.
llvm-svn: 247769
In `IndVarSimplify::ExpandSCEVIfNeeded`,
`SCEVExpander::findExistingExpansion` may return an `llvm::Value` that
differs in type from the SCEV it was asked to find an expansion for (but
computes the same value). In such cases, we fall back on
`expandCodeFor`; and rely on LLVM to CSE the two equivalent
expressions (different only by a no-op cast) into a single computation.
I tried a few other approaches to fixing PR24783, all of which turned
out to be more complex than this current version:
1. Move the `ExpandSCEVIfNeeded` logic into `expandCodeFor`. This got
problematic because currently we do not pass in the `Loop *` into
`expandCodeFor`. Changing the interface to do this is a more
invasive change, and really does not make much semantic sense unless
the SCEV being passed in is an add recurrence.
There is also the problem of `expandCodeFor` being used in places
other than `indvars` -- there may be performance / correctness
issues elsewhere if `expandCodeFor` is moved from always generating
IR from scratch to cache-like model.
2. Have `findExistingExpansion` only return expression with the correct
type. This would make `isHighCostExpansionHelper` and thus
`isHighCostExpansion` more conservative than necessary.
3. Insert casts on the value returned by `findExistingExpansion` if
needed using `InsertNoopCastOfTo`. This is complicated because
`InsertNoopCastOfTo` depends on internal state of its
`SCEVExpander` (specifically `Builder.GetInserPoint()`), and this
may not be set up when `ExpandSCEVIfNeeded` is called.
4. Manually insert casts on the value returned by
`findExistingExpansion` if needed using `InsertNoopCastOfTo` via
`CastInst::Create`. This is probably workable, but figuring out the
location where the cast instruction needs to be inserted has enough
edge cases (arguments, constants, invokes, LCSSA must be preserved)
makes me feel what I have right now is simplest solution.
llvm-svn: 247749
The patch extends the optimization to cases where the constant's
magnitude is so small or large that the rounding of the conversion
is irrelevant. The "so small" case includes negative zero.
Differential review: http://reviews.llvm.org/D11210
llvm-svn: 247708
LazuValueInfo can prove that value is nonnull based on the context information.
Make use of this ability to infer nonnull attributes for the call arguments.
Differential Revision: http://reviews.llvm.org/D12836
llvm-svn: 247707
Summary:
This change lets a `PlaceSafepoints` client change how wide the trip
count of a loop has to be for the loop to be considerd "counted", via
`CountedLoopTripWidth`. It also removes the boolean `SkipCounted` flag
and the `upperTripBound` constant -- we can get the old behavior of
`SkipCounted` == `false` by setting `CountedLoopTripWidth` to `13` (2 ^
13 == 8192).
Reviewers: reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D12789
llvm-svn: 247656
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of passing arguments at callsite. In this way it can handle cases where the argument does not have nonnull attribute but has a dominating null check from the CFG. It also adds assertions in isKnownNonNull() and isKnownNonNullFromDominatingCondition() to make sure the value checked is pointer type (as defined in LLVM document). These assertions might trip failures in things which are not covered under llvm/test, but fixes should be pretty obvious.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12779
llvm-svn: 247587
GetElementPointers must have the first argument's type compared
for structural equivalence. Previously the code erroneously compared the
pointer's type, but this code was dead because all pointer types (of the
same address space) are the same. The pointee must be compared instead
(using the type stored in the GEP, not from the pointer type which will
be erased anyway).
Author: jrkoenig
Reviewers: dschuff, nlewycky, jfb
Subscribers: nlewycky, llvm-commits
Differential revision: http://reviews.llvm.org/D12820
llvm-svn: 247570
Improved InstCombine support for CVTPH2PS (F16C half 2 float conversion):
<4 x float> @llvm.x86.vcvtph2ps.128(<8 x i16>) - only uses the bottom 4 i16 elements for the conversion.
Added constant folding support.
Differential Revision: http://reviews.llvm.org/D12731
llvm-svn: 247504
In some ways this is a very boring port to the new pass manager as there
are no interesting analyses or dependencies or other oddities.
However, this does introduce the first good example of a transformation
pass with non-trivial state porting to the new pass manager. I've tried
to carve out patterns here to replicate elsewhere, and would appreciate
comments on whether folks like these patterns:
- A common need in the new pass manager is to effectively lift the pass
class and some of its state into a public header file. Prior to this,
LLVM used anonymous namespaces to provide "module private" types and
utilities, but that doesn't scale to cases where a public header file
is needed and the new pass manager will exacerbate that. The pattern
I've adopted here is to use the namespace-cased-name of the core pass
(what would be a module if we had them) as a module-private namespace.
Then utility and other code can be declared and defined in this
namespace. At some point in the future, we could even have
(conditionally compiled) code that used modules features when
available to do the same basic thing.
- I've split the actual pass run method in two in order to expose
a private method usable by the old pass manager to wrap the new class
with a minimum of duplicated code. I actually looked at a bunch of
ways to automate or generate these, but they are all quite terrible
IMO. The fundamental need is to extract the set of analyses which need
to cross this interface boundary, and that will end up being too
unpredictable to effectively encapsulate IMO. This is also
a relatively small amount of boiler plate that will live a relatively
short time, so I'm not too worried about the fact that it is boiler
plate.
The rest of the patch is totally boring but results in a massive diff
(sorry). It just moves code around and removes or adds qualifiers to
reflect the new name and nesting structure.
Differential Revision: http://reviews.llvm.org/D12773
llvm-svn: 247501
The rest of the EH pads are fine, since they have at most one label and
take fewer operands for the personality.
Old catchpad vs. new:
%5 = catchpad [i8* bitcast (i32 ()* @"\01?filt$0@0@main@@" to i8*)] to label %__except.ret.10 unwind label %catchendblock.9
-----
%5 = catchpad [i8* bitcast (i32 ()* @"\01?filt$0@0@main@@" to i8*)]
to label %__except.ret.10 unwind label %catchendblock.9
llvm-svn: 247433