I'm mildly worried about potentially reordering exp/exp_done with
IntrWriteMem on the intrinsic.
Requires hacking out the illegal type on SI, so manually select that
case during lowering.
The current implementation assumes there is an instruction associated
with the transform, but this is not the case for
timm/TargetConstant/immarg values. These transforms should directly
operate on a specific MachineOperand in the source
instruction. TableGen would assert if you attempted to define an
equivalent GISDNodeXFormEquiv using timm when it failed to find the
instruction matcher.
Specially recognize SDNodeXForms on timm, and pass the operand index
to the render function.
Ideally this would be a separate render function type that looks like
void renderFoo(MachineInstrBuilder, const MachineOperand&), but this
proved to be somewhat mechanically painful. Add an optional operand
index which will only be passed if the transform should only look at
the one source operand.
Theoretically it would also be possible to only ever pass the
MachineOperand, and the existing renderers would check the parent. I
think that would be somewhat ugly for the standard usage which may
want to inspect other operands, and I also think MachineOperand should
eventually not carry a pointer to the parent instruction.
Use it in one sample pattern. This isn't a great example, since the
transform exists to satisfy DAG type constraints. This could also be
avoided by just changing the MachineInstr's arbitrary choice of
operand type from i16 to i32. Other patterns have nontrivial uses, but
this serves as the simplest example.
One flaw this still has is if you try to use an SDNodeXForm defined
for imm, but the source pattern uses timm, you still see the "Failed
to lookup instruction" assert. However, there is now a way to avoid
it.
We have a lot of complex pattern variants that just set the source
modifiers that are really handled, and then set the output modifiers
to 0. We're unlikely to ever match output modifiers from the use
instruction side, and we already match clamp/omod in a separate pass.
We are duplicating predicates if several parts of the combined
predicate list contain the same condition. Added code to deduplicate
the list.
We have AssemblerPredicates and AssemblerPredicate in the
PredicateControl, but we never use AssemblerPredicates with an
actual list, so this one is dropped.
This addresses the first part of the llvm bug 43886:
https://bugs.llvm.org/show_bug.cgi?id=43886
Differential Revision: https://reviews.llvm.org/D69815
We already have isFloatType helper, and they are out of sync.
Drop one and merge the type list.
Differential Revision: https://reviews.llvm.org/D69138
llvm-svn: 375175
Summary:
Extend cachepolicy operand in the new VMEM buffer intrinsics
to supply information whether the buffer data is swizzled.
Also, propagate this information to MIR.
Intrinsics updated:
int_amdgcn_raw_buffer_load
int_amdgcn_raw_buffer_load_format
int_amdgcn_raw_buffer_store
int_amdgcn_raw_buffer_store_format
int_amdgcn_raw_tbuffer_load
int_amdgcn_raw_tbuffer_store
int_amdgcn_struct_buffer_load
int_amdgcn_struct_buffer_load_format
int_amdgcn_struct_buffer_store
int_amdgcn_struct_buffer_store_format
int_amdgcn_struct_tbuffer_load
int_amdgcn_struct_tbuffer_store
Furthermore, disable merging of VMEM buffer instructions
in SI Load/Store optimizer, if the "swizzled" bit on the instruction
is on.
The default value of the bit is 0, meaning that data in buffer
is linear and buffer instructions can be merged.
There is no difference in the generated code with this commit.
However, in the future it will be expected that front-ends
use buffer intrinsics with correct "swizzled" bit set.
Reviewers: arsenm, nhaehnle, tpr
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, arphaman, jfb, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68200
llvm-svn: 373491
Currently the searchable tables report the number of dwords. These
round to the same number for 3 and 4 component d16
instructions. Change this to report the number of elements so this
isn't ambiguous.
llvm-svn: 369202
Start migrating to a form that will be compatible with the global isel
emitter. Also should fix some overly lax checks on the memory type,
which allowed mis-selecting some illegal atomics.
llvm-svn: 367506
AMDGPU uses some custom code predicates for testing alignments.
I'm still having trouble comprehending the behavior of predicate bits
in the PatFrag hierarchy. Any attempt to abstract these properties
unexpectdly fails to apply them.
llvm-svn: 367373
These should really use v32f32, but were defined as v32i32
due to the lack of the v32f32 type.
Differential Revision: https://reviews.llvm.org/D64667
llvm-svn: 365972
Summary:
D64497 allowed abs/neg source modifiers on v_cndmask_b32 but it doesn't
make any sense to apply them to f16 operands; they would interpret the
bits of the value as an f32, giving nonsensical results. This patch
restricts them to f32 operands.
Reviewers: arsenm, hakzsam
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64636
llvm-svn: 365904
Summary of changes:
- simplified handling of FLAT offset: offset_s13 and offset_u12 have been replaced with flat_offset;
- provided information about error position for pre-gfx9 targets;
- improved errors handling.
Reviewers: artem.tamazov, arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D64244
llvm-svn: 365321
Summary:
This fixes a hardware bug that makes a branch offset of 0x3f unsafe.
This replaces the 32 bit branch with offset 0x3f to a 64 bit
instruction that includes the same 32 bit branch and the encoding
for a s_nop 0 to follow. The relaxer than modifies the offsets
accordingly.
Change-Id: I10b7aed99d651f8159401b01bb421f105fa6288e
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63494
llvm-svn: 364451
Summary:
The symbols use the processor-specific SHN_AMDGPU_LDS section index
introduced with a previous change. The linker is then expected to resolve
relocations, which are also emitted.
Initially disabled for HSA and PAL environments until they have caught up
in terms of linker and runtime loader.
Some notes:
- The llvm.amdgcn.groupstaticsize intrinsics can no longer be lowered
to a constant at compile times, which means some tests can no longer
be applied.
The current "solution" is a terrible hack, but the intrinsic isn't
used by Mesa, so we can keep it for now.
- We no longer know the full LDS size per kernel at compile time, which
means that we can no longer generate a relevant error message at
compile time. It would be possible to add a check for the size of
individual variables, but ultimately the linker will have to perform
the final check.
Change-Id: If66dbf33fccfbf3609aefefa2558ac0850d42275
Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin
Subscribers: qcolombet, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61494
llvm-svn: 364297
Earlier commit has added AMDGPUOperand::isBoolReg(). Turns out
gcc issues warning about unused function since D63204 is not
yet submitted.
Added NFC part of D63204 to have a use of that function and
mute the warning.
llvm-svn: 363416