when working with a diagnostic attached to a source location. Also
comment more thoroughly why its important to handle non-location
diagnostic messages separately.
Finally, hoist the creation of the TextDiagnostic object up to the
beginning of the location-based diagnostics. This paves the way for
sinking more and more of the logic into this class. When everything
below this constructor is sunk into the TextDiagnostic class it should
be sufficiently "feature complete" to accomplish my two goals:
1) Have the printing of a macro expansion note use the exact same code
as any other note.
2) Be able to implement clang_formatDiagnostic in terms of this class.
llvm-svn: 140526
a dedicated path. The logic for such diagnostics is much simpler than
for others.
This begins to make an important separation in this routine. We expect
most (and most interesting) textual diagnostics to be made in the
presence of at least *some* source locations and a source manager.
However the DiagnosticConsumer must be prepared to diagnose errors even
when the source manager doesn't (yet) exist or when there is no location
information at all. In order to sink more and more logic into the
TextDiagnostic class while minimizing its complexity, my plan is to
force the DiagnosticConsumer to special case diagnosing any locationless
messages and then hand the rest to the TextDiagnostic class. I'd
appreciate any comments on this design. It requires a bit of code
duplication in order to keep interfaces simple. Alternatively, if we
really need TextDiagnostic to be capable of handling diagnostics even in
the absence of a viable SourceManager, then this split isn't necessary.
llvm-svn: 140525
function. Doing this conveniently requires moving the word wrapping to
use a StringRef which seems generally an improvement. There is a lot
that could be simplified in the word wrapping by using StringRef that
I haven't looked at yet...
llvm-svn: 140524
would have caught a bug I introduced during refactoring. Silly me
thinking this was all well tested already...
If any of this is already covered by other tests, let me know. I looked
around and didn't see any.
llvm-svn: 140522
of a ContentCache, since multiple FileIDs can have the same ContentCache
but the expanded macro arguments locations will be different.
llvm-svn: 140521
It's not descriptive enough and it's just a call of translateFileLineCol()
followed by a call to getMacroArgExpandedLocation(), which is better to be
called explicitly since it has a certain cost and is not always required.
llvm-svn: 140520
a "loaded" location of the precompiled preamble.
Instead, handle specially locations of preprocessed entities:
-When looking up for preprocessed entities, map main file locations inside the
preamble range to a preamble loaded location.
-When getting the source range of a preprocessing cursor, map preamble loaded
locations back to main file locations.
Fixes rdar://10175093 & http://llvm.org/PR10999
llvm-svn: 140519
symbolication. Also improved the SBInstruction API to allow
access to the instruction opcode name, mnemonics, comment and
instruction data.
Added the ability to edit SBLineEntry objects (change the file,
line and column), and also allow SBSymbolContext objects to be
modified (set module, comp unit, function, block, line entry
or symbol).
The SymbolContext and SBSymbolContext can now generate inlined
call stack infomration for symbolication much easier using the
SymbolContext::GetParentInlinedFrameInfo(...) and
SBSymbolContext::GetParentInlinedFrameInfo(...) methods.
llvm-svn: 140518
characters. I could find no newline character in a diagnostic message,
and adding an assert to this code never fires in the testsuite.
I think this code is essentially dead, and was previously used for
a different purpose. If I just don't understand how it is we can end up
with a newline here please let me know (with a test case?) and I'll
revert.
llvm-svn: 140497