On Windows, static libraries are named lib<name>.lib while import libraries are
named <name>.lib. Use the appropriate naming on itanium and msvc environments.
This is setup properly so that if a dynamic builtins is used on Windows, it
would do the right thing, although this is not currently wired through the
driver (i.e. there is no equivalent to -{shared,static}-gcc).
llvm-svn: 280169
r280133. Original commit message:
C++ Modules TS: driver support for building modules.
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280134
to CC1, which are translated to function attributes and can e.g. be mapped on
build attributes FP_exceptions and FP_denormal. Setting these build attributes
allows better selection of floating point libraries.
Differential Revision: https://reviews.llvm.org/D23840
llvm-svn: 280064
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280035
Clang tracks only start columns, not start-end ranges. CodeView allows for that, but the VS debugger doesn't handle anything less than a complete range well--it either highlights the wrong part of a statement or truncates source lines in the assembly view. It's better to have no column information at all.
So by default, we'll omit the column information for CodeView targeting Windows.
Since the column info is still useful for sanitizers, I've promoted -gcolumn-info (and -gno-column-info) to a CoreOption and added a couple tests to make sure that works for clang-cl.
Differential Revision: https://reviews.llvm.org/D23720
llvm-svn: 279765
If the inline info is not duplicated into the skeleton CU, then there's
value in using -gsplit-dwarf and -gmlt together (to keep all those extra
subprograms out of the skeleton CU, while also producing smaller .dwo
files)
llvm-svn: 279687
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279651
iOS (and other 32-bit ARM variants) always require a valid frame pointer to
improve backtraces. Previously the -fomit-frame-pointer and
-momit-leaf-frame-pointer options were being silently discarded via hacks in
the backend. It's better if Clang configures itself to emit the correct IR and
warns about (ignored) attempts to override this.
llvm-svn: 279546
clang already treats all inputs as utf-8. Warn if anything but utf-8 is passed.
Do this by mapping source-charset to finput-charset, which already behaves like
this. Slightly tweak finput-charset to accept "utf-8" case-insensitively. This
matches gcc's and cl.exe's behavior, and IANA says that character set names are
case-insensitive.
https://reviews.llvm.org/D23807
llvm-svn: 279531
If they are, we end up with the last intermediary output preserved
in the current directory after compilation.
Added a test case to verify that we're using appropriate filenames
for outputs of different phases.
Differential Revision: https://reviews.llvm.org/D23526
llvm-svn: 279455
In this mode, there is no need to load any module map and the programmer can
simply use "@import" syntax to load the module directly from a prebuilt
module path. When loading from prebuilt module path, we don't support
rebuilding of the module files and we ignore compatible configuration
mismatches.
rdar://27290316
Differential Revision: http://reviews.llvm.org/D23125
llvm-svn: 279096
Summary:
The eprintf library was added before the general OS X builtins library existed as a place to store one builtin function. Since we have for several years had an actual mandated builtin library for OS X > 10.5, we should just merge eprintf into the main library.
This change will resolve PR28855.
As a follow up I'll also patch compiler-rt to not generate the eprintf library anymore.
Reviewers: ddunbar, bob.wilson
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23531
llvm-svn: 278988
Summary:
There's no point to --cuda-path if we then go and include /usr/include
first. And if you install the right packages, Ubuntu will install (very
old) CUDA headers there.
Reviewers: tra
Subscribers: cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D23341
llvm-svn: 278734
Summary:
getAsInteger returns true on error. Oops.
No test because the behavior at the moment is identical with or without
this change.
Reviewers: tra
Subscribers: cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D23340
llvm-svn: 278733
Currently, if --driver-mode is not passed at all, it will default
to GCC style driver. This is never an issue for clang because
it manually constructs a --driver-mode option and passes it.
However, we should still try to do as good as we can even if no
--driver-mode is passed. LibTooling, for example, does not pass
a --driver-mode option and while it could, it seems like we should
still fallback to the best possible default we can.
This is one of two steps necessary to get clang-tidy working on Windows.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D23454
llvm-svn: 278535
We're only going to provide support for using PIE on architectures that
provide PC-relative addressing. i686 is not one of those, so add the
necessary bits for only passing in -pie -zrelro conditionally.
llvm-svn: 278395
On Linux we pass in -fomit-frame-pointer flags (and similar)
automatically if optimization is enabled. Let's do the same thing on
CloudABI. Without this, Clang seems to run out of registers quite
quickly while trying to build code with inline assembly.
llvm-svn: 278393
Let the driver pass the option to frontend. Do not set precision metadata for division instructions when this option is set. Set function attribute "correctly-rounded-divide-sqrt-fp-math" based on this option.
Differential Revision: https://reviews.llvm.org/D22940
llvm-svn: 278155
It's surprising that you have to pass /Z7 in addition to -gcodeview to
get debug info. The sanitizer runtime, for example, expects that if the
compiler supports the -gline-tables-only flag, then it will emit debug
info.
llvm-svn: 278139
Since CFI support has landed in the WebAssembly backend, enable it in
the frontend driver.
Patch by Dominic Chen
Differential Revision: https://reviews.llvm.org/D23244
llvm-svn: 278051
This patch (with the corresponding ARM backend patch) adds support for
some new relocation models:
* Read-only position independence (ROPI): Code and read-only data is accessed
PC-relative. The offsets between all code and RO data sections are known at
static link time.
* Read-write position independence (RWPI): Read-write data is accessed relative
to a static base register. The offsets between all writeable data sections
are known at static link time.
These two modes are independent (they specify how different objects
should be addressed), so they can be used individually or together.
These modes are intended for bare-metal systems or systems with small
real-time operating systems. They are designed to avoid the need for a
dynamic linker, the only initialisation required is setting the static
base register to an appropriate value for RWPI code.
There is one C construct not currently supported by these modes: global
variables initialised to the address of another global variable or
function, where that address is not known at static-link time. There are
a few possible ways to solve this:
* Disallow this, and require the user to write their own initialisation
function if they need variables like this.
* Emit dynamic initialisers for these variables in the compiler, called from
the .init_array section (as is currently done for C++ dynamic initialisers).
We have a patch to do this, described in my original RFC email
(http://lists.llvm.org/pipermail/llvm-dev/2015-December/093022.html), but the
feedback from that RFC thread was that this is not something that belongs in
clang.
* Use a small dynamic loader to fix up these variables, by adding the
difference between the load and execution address of the relevant section.
This would require linker co-operation to generate a table of addresses that
need fixing up.
Differential Revision: https://reviews.llvm.org/D23196
llvm-svn: 278016
Bug 1: triples like armv7-pc-linux-musl use the wrong linker name
ld-musl-armv7.so.1; the right name should be ld-musl-arm.so.1, disregarding the
subarch field.
Bug 2: when compiler option -mhard-float is used, we should use the "hardfloat"
linker, no matter whether the triple itself mentions "hardfloat".
Patch by Lei Zhang!
Differential Revision: https://reviews.llvm.org/D22904
llvm-svn: 277985
This fixes a couple of bugs in Windows SDK Detection.
1. `readFullStringValue` returns a bool, but was being compared
with ERROR_SUCCESS.
2. `RegQueryValueExW` might return the null terminator in the
queried value which will result in incorrect values being
returned from `getSystemRegistryString`.
Patch By: comicfans44@gmail.com
Reviewed By: zturner
Differential Revision: http://reviews.llvm.org/D21946
llvm-svn: 277005
Summary:
This patch prevents OpenMP flags from being forwarded to CUDA device commands. That was causing the CUDA frontend to attempt to emit OpenMP code which is not supported.
This fixes the bug reported in https://llvm.org/bugs/show_bug.cgi?id=28723.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, tra, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22895
llvm-svn: 276979
This resubmit r270688 which broke some specific buildbots.That's because
there is incorrect indexing problem in the targetparser,and the problem is
fixed in r276957.
Differential Revision: https://reviews.llvm.org/D21277
llvm-svn: 276958
Compute an effective triple once per job. Cache the triple in the
prevailing ToolChain for the duration of the job.
Clients which need effective triples now look them up in the ToolChain.
This eliminates wasteful re-computation of effective triples (e.g in
getARMFloatABI()).
While we're at it, delete MachO::ComputeEffectiveClangTriple. It was a
no-op override.
Differential Revision: https://reviews.llvm.org/D22596
llvm-svn: 276937
This reverts commit r275895 in order to address some post-commit review
feedback from Eric Christopher (see: the list thread for r275895).
llvm-svn: 276936
Summary:
This patch aims at removing redundancy in the way include paths for the regular and offloading toolchains are appended to the arguments list in the clang tool.
This was suggested by @rsmith in response to r275931.
Reviewers: rsmith, tra
Subscribers: rsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D22518
llvm-svn: 276929
This patch introduces a new cmake variable: CLANG_DEFAULT_RTLIB, thru
which we can specify a default value for -rtlib (libgcc or
compiler-rt) at build time, just like how we set the default C++
stdlib thru CLANG_DEFAULT_CXX_STDLIB.
With these two options, we can configure clang to build binaries on
Linux that have no runtime dependence on any gcc libs (libstdc++ or
libgcc_s).
Patch by Lei Zhang!
Differential Revision: https://reviews.llvm.org/D22663
llvm-svn: 276848
Make integers explicitly unsigned, so the tuple constructor will resolve
properly when but with clang 3.6, 3.7 and gcc 6.1.1 libstdc++ headers.
Patch by Frederich Munch!
Differential Revision: https://reviews.llvm.org/D22798
llvm-svn: 276831