Summary:
Add a `cleanupendpad` instruction, used to mark exceptional exits out of
cleanups (for languages/targets that can abort a cleanup with another
exception). The `cleanupendpad` instruction is similar to the `catchendpad`
instruction in that it is an EH pad which is the target of unwind edges in
the handler and which itself has an unwind edge to the next EH action.
The `cleanupendpad` instruction, similar to `cleanupret` has a `cleanuppad`
argument indicating which cleanup it exits. The unwind successors of a
`cleanuppad`'s `cleanupendpad`s must agree with each other and with its
`cleanupret`s.
Update WinEHPrepare (and docs/tests) to accomodate `cleanupendpad`.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12433
llvm-svn: 246751
Summary:
Constant vectors weren't allowed to have an i1 condition in the
BitcodeReader. Make sure we have the same restrictions that are
documented, not more.
Reviewers: nlewycky, rafael, kschimpf
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12440
llvm-svn: 246459
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Summary:
WinEHPrepare is going to require that cleanuppad and catchpad produce values
of token type which are consumed by any cleanupret or catchret exiting the
pad. This change updates the signatures of those operators to require/enforce
that the type produced by the pads is token type and that the rets have an
appropriate argument.
The catchpad argument of a `CatchReturnInst` must be a `CatchPadInst` (and
similarly for `CleanupReturnInst`/`CleanupPadInst`). To accommodate that
restriction, this change adds a notion of an operator constraint to both
LLParser and BitcodeReader, allowing appropriate sentinels to be constructed
for forward references and appropriate error messages to be emitted for
illegal inputs.
Also add a verifier rule (noted in LangRef) that a catchpad with a catchpad
predecessor must have no other predecessors; this ensures that WinEHPrepare
will see the expected linear relationship between sibling catches on the
same try.
Lastly, remove some superfluous/vestigial casts from instruction operand
setters operating on BasicBlocks.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12108
llvm-svn: 245797
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Swift has a custom calling convention that also requires some new flags
on arguments and one new attribute on alloca instructions. This patch
does not include the implementation of that calling convention - that
will be provided as part of the open-source release of Swift; this only
reserves the bitcode constant values so that they are not used for
other purposes.
llvm-svn: 243379
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
FCmp behaves a lot like a floating-point binary operator in many ways,
and can benefit from fast-math information. Flags such as nsz and nnan
can affect if this fcmp (in combination with a select) can be treated
as a fminnum/fmaxnum operation.
This adds backwards-compatible bitcode support, IR parsing and writing,
LangRef changes and IRBuilder changes. I'll need to audit InstSimplify
and InstCombine in a followup to find places where flags should be
copied.
llvm-svn: 241901
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
Summary:
Looking at r241279, I noticed that UpgradedIntrinsics only gets written
to in the following code:
if (UpgradeIntrinsicFunction(&F, NewFn))
UpgradedIntrinsics[&F] = NewFn;
Looking through UpgradeIntrinsicFunction, we always return false OR
NewFn will be set to a different function from our source.
This patch pulls the F != NewFn into UpgradeIntrinsicFunction as an
assert, and removes the check from callers of UpgradeIntrinsicFunction.
Reviewers: rafael, chandlerc
Subscribers: llvm-commits-list
Differential Revision: http://reviews.llvm.org/D10915
llvm-svn: 241369
When trying to upgrade @llvm.x86.sse2.psrl.dq while parsing a module,
BitcodeReader adds the function to its worklist twice, resulting in a
crash when accessing it the second time.
This patch replaces the worklist vector by a map.
Patch by Philip Pfaffe.
llvm-svn: 241281
It is meant to be used to record modules @imported by the current
compile unit, so a debugger an import the same modules to replicate this
environment before dropping into the expression evaluator.
DIModule is a sibling to DINamespace and behaves quite similarly.
In addition to the name of the module it also records the module
configuration details that are necessary to uniquely identify the module.
This includes the configuration macros (e.g., -DNDEBUG), the include path
where the module.map file is to be found, and the isysroot.
The idea is that the backend will turn this into a DW_TAG_module.
http://reviews.llvm.org/D9614
rdar://problem/20965932
llvm-svn: 241017
Having different code paths for streamed and regular bitcode reading was a
source of bugs in the past and this defines them away.
It has a small but noticeable impact on performance. I timed running
"opt -disable-output -disable-verify" on a ltoed clang. It goes from
14.752845231 seconds time elapsed ( +- 0.16% )
to
15.012463721 seconds time elapsed ( +- 0.11% )
Extracted from a patch by Karl Schimpf.
llvm-svn: 240305
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Before this patch the bitcode reader would read a module from a file
that contained in order:
* Any number of non MODULE_BLOCK sub blocks.
* One MODULE_BLOCK
* Any number of non MODULE_BLOCK sub blocks.
* 4 '\n' characters to handle OS X's ranlib.
Since we support lazy reading of modules, any information that is relevant
for the module has to be in the MODULE_BLOCK or before it. We don't gain
anything from checking what is after.
This patch then changes the reader to stop once the MODULE_BLOCK has been
successfully parsed.
This avoids the ugly special case for .bc files in an archive and makes it
easier to embed bitcode files.
llvm-svn: 239845
`LLVM_ENABLE_MODULES` builds sometimes fail because `Intrinsics.td`
needs to regenerate `Instrinsics.h` before anyone can include anything
from the LLVM_IR module. Represent the dependency explicitly to prevent
that.
llvm-svn: 239796
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602