It is better to return arguments directly in registers
if we are making a call rather than introducing expensive
stack usage. In one of sample compile from one of
Blender's many kernel variants, this fires on about
~20 different functions. Future improvements may be to
recognize simple cases where the pointer is indexing a small
array. This also fails when the store to the out argument
is in a separate block from the return, which happens in
a few of the Blender functions. This should also probably
be using MemorySSA which might help with that.
I'm not sure this is correct as a FunctionPass, but
MemoryDependenceAnalysis seems to not work with
a ModulePass.
I'm also not sure where it should run.I think it should
run before DeadArgumentElimination, so maybe either
EP_CGSCCOptimizerLate or EP_ScalarOptimizerLate.
llvm-svn: 309416
We need to pass something to functions for this to work.
It isn't derivable just from the kernarg segment pointer
because the implicit arguments are placed after the
kernel arguments.
Also fixes missing test for the intrinsic.
llvm-svn: 309398
This patch enables choice for accessing thread local
storage pointer (like '-mtp' in gcc).
Differential Revision: https://reviews.llvm.org/D34408
llvm-svn: 309381
The ARM Runtime ABI document (IHI0043) defines the AEABI floating point
helper functions in section 4.1.2 The floating-point helper functions.
The functions listed in this section must always use the base AAPCS calling
convention.
This test generates calls to all the helper functions that llvm supports
and checks that the base AAPCS calling convention has been used. We test
the equivalent of -mfloat-abi=soft, -mfloat-abi=softfp, -mfloat-abi=hardfp
with an FPU that supports single and double precision, and one that only
supports double precision.
Differential Revision: https://reviews.llvm.org/D35904
llvm-svn: 309371
The code assumed that unclobbered/unspilled callee saved registers are
unused in the function. This is not true for callee saved registers that are
also used to pass parameters such as swiftself.
rdar://33401922
llvm-svn: 309350
The X86 tail call eligibility logic was correct when it was written, but
the addition of inalloca and argument copy elision broke its
assumptions. It was assuming that fixed stack objects were immutable.
Currently, we aim to emit a tail call if no arguments have to be
re-arranged in memory. This code would trace the outgoing argument
values back to check if they are loads from an incoming stack object.
If the stack argument is immutable, then we won't need to store it back
to the stack when we tail call.
Fortunately, stack objects track their mutability, so we can just make
the obvious check to fix the bug.
This was http://crbug.com/749826
llvm-svn: 309343
The (seldom-used) TBI-aware optimization had a typo lying dormant since
it was first introduced, in r252573: when asking for demanded bits, it
told TLI that it was running after legalize, where the opposite was
true.
This is an important piece of information, that the demanded bits
analysis uses to make assumptions about the node. r301019 added such an
assumption, which was broken by the TBI combine.
Instead, pass the correct flags to TLO.
llvm-svn: 309323
Improve DAGTypeLegalizer::convertMask's isSETCCorConvertedSETCC assertion to properly check for any mixture of SETCC or BUILD_VECTOR of constants, or a logical mask op of them.
llvm-svn: 309302
In optimizeCompareInstr, a compare instruction is eliminated by using a record form instruction if possible.
If the branch instruction that uses the result of the compare has a static branch hint, the optimization does not happen.
This patch makes this optimization happen regardless of the branch hint by splitting branch hint and branch condition before checking the predicate to identify the possible optimizations.
Differential Revision: https://reviews.llvm.org/D35801
llvm-svn: 309255
Currently SI_IF results in a s_and_saveexec_b64 followed by s_xor_b64.
The xor is used to extract only the changed bits. In case of a simple
if region where the only use of that value is in the SI_END_CF to
restore the old exec mask, we can omit the xor and perform an or of
the exec mask with the original exec value saved by the
s_and_saveexec_b64.
Differential Revision: https://reviews.llvm.org/D35861
llvm-svn: 309185
This patch expands the support of lowerInterleavedStore to 32x8i stride 4.
LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=4 VF=32) and we plan to include more patterns in the future. To reach our goal of "more patterns". We include two mask creators. The first function creates shuffle's mask equivalent to unpacklo/unpackhi instructions. The other creator creates mask equivalent to a concat of two half vectors(high/low).
The patch goal is to optimize the following sequence:
At the end of the computation, we have ymm2, ymm0, ymm12 and ymm3 holding
each 32 chars:
c0, c1, , c31
m0, m1, , m31
y0, y1, , y31
k0, k1, ., k31
And these need to be transposed/interleaved and stored like so:
c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 ....
Reviewers:
dorit
Farhana
RKSimon
guyblank
DavidKreitzer
Differential Revision: https://reviews.llvm.org/D34601
llvm-svn: 309086
Summary: The aligned load predicates don't suppress themselves if the load is non-temporal the way the unaligned predicates do. For the most part this isn't a problem because the aligned predicates are mostly used for instructions that only load the the non-temporal loads have priority over those. The exception are masked loads.
Reviewers: RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35712
llvm-svn: 309079
This patch just adds printing of CR bit registers in a more human-readable
form akin to that used by the GNU binutils.
Differential Revision: https://reviews.llvm.org/D31494
llvm-svn: 309001
D35067/rL308322 attempted to support up to 4 load pairs for memcmp inlining which resulted in regressions for some optimized libc memcmp implementations (PR33914).
Until we can match these more optimal cases, this patch reduces the memcmp expansion to a maximum of 2 load pairs (which matches what we do for -Os).
This patch should be considered for the 5.0.0 release branch as well
Differential Revision: https://reviews.llvm.org/D35830
llvm-svn: 308986
Create a dummy 8 byte fixed object for the unused slot below the first
stored vararg.
Alternative ideas tested but skipped: One could try to align the whole
fixed object to 16, but I haven't found how to add an offset to the stack
frame used in LowerWin64_VASTART.
If only the size of the fixed stack object size is padded but not the offset, via
MFI.CreateFixedObject(alignTo(GPRSaveSize, 16), -(int)GPRSaveSize, false),
PrologEpilogInserter crashes due to "Attempted to reset backwards range!".
This fixes misconceptions about where registers are spilled, since
AArch64FrameLowering.cpp assumes the offset from fixed objects is
aligned to 16 bytes (and the Win64 case there already manually aligns
the offset to 16 bytes).
This fixes cases where local stack allocations could overwrite callee
saved registers on the stack.
Differential Revision: https://reviews.llvm.org/D35720
llvm-svn: 308950
This patch removes unnecessary zero copies in BBs that are targets of b.eq/b.ne
and we know the result of the compare instruction is zero. For example,
BB#0:
subs w0, w1, w2
str w0, [x1]
b.ne .LBB0_2
BB#1:
mov w0, wzr ; <-- redundant
str w0, [x2]
.LBB0_2
Differential Revision: https://reviews.llvm.org/D35075
llvm-svn: 308849
These patterns were only missing to favor using the legacy instructions when the shift was a constant. With careful adjustment of the pattern complexity we can make sure the immediate instructions still have priority over these patterns.
llvm-svn: 308834
Check the actual memory type stored and not the extended value size
when considering if truncated store merge is worthwhile.
Reviewers: efriedma, RKSimon, spatel, jyknight
Reviewed By: efriedma
Subscribers: llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D35623
llvm-svn: 308833
-membedded-data changes the location of constant data from the .sdata to
the .rodata section. Previously it was (incorrectly) always located in the
.rodata section.
Reviewers: atanasyan
Differential Revision: https://reviews.llvm.org/D35686
llvm-svn: 308758
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
Currently we only support (i32 bitcast(v32i1)) using the AVX2 VPMOVMSKB ymm instruction.
This patch adds support for splitting pre-AVX2 targets into 2 x (V)PMOVMSKB xmm instructions and merging the integer results.
In future we could probably generalize this to handle more cases.
Differential Revision: https://reviews.llvm.org/D35303
llvm-svn: 308723
It revealed a bug in the Localizer pass which has now been fixed.
This includes the fix for SUBREG_TO_REG committed separately last time.
llvm-svn: 308688
If the localizer pass puts one of its constants before the label that tells the
unwinder "jump here to handle your exception" then control-flow will skip it,
leaving uninitialized registers at runtime. That's bad.
llvm-svn: 308687
The patch adds support of i128 params lowering. The changes are quite trivial to
support i128 as a "special case" of integer type. With this patch, we lower i128
params the same way as aggregates of size 16 bytes: .param .b8 _ [16].
Currently, NVPTX can't deal with the 128 bit integers:
* in some cases because of failed assertions like
ValVTs.size() == OutVals.size() && "Bad return value decomposition"
* in other cases emitting PTX with .i128 or .u128 types (which are not valid [1])
[1] http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#fundamental-types
Differential Revision: https://reviews.llvm.org/D34555
Patch by: Denys Zariaiev (denys.zariaiev@gmail.com)
llvm-svn: 308675
On AMDGPU SGPR spills are really spilled to another register.
The spiller creates the spills to new frame index objects,
which is used as a placeholder.
This will eventually be replaced with a reference to a position
in a VGPR to write to and the frame index deleted. It is
most likely not a real stack location that can be shared
with another stack object.
This is a problem when StackSlotColoring decides it should
combine a frame index used for a normal VGPR spill with
a real stack location and a frame index used for an SGPR.
Add an ID field so that StackSlotColoring has a way
of knowing the different frame index types are
incompatible.
llvm-svn: 308673
Summary:
Also enable no-fsmuld for sparcv7 (which doesn't have the
instruction).
The previous code which used a post-processing pass to do this was
unnecessary; disabling the instruction is entirely sufficient.
Reviewers: jacob_hansen, ekedaigle
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35576
llvm-svn: 308661
We allow wider than 5 bits in the 16 and 32 bit store forms. And we allow wider than 6 bits on the 64-bit regsiter form.:w
I'm assuming this was a mistake made back in r148024.
llvm-svn: 308656
Summary:
When pushing an extension of a constant bitwise operator on a load
into the load, change other uses of the load value if they exist to
prevent the old load from persisting.
Reviewers: spatel, RKSimon, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35030
llvm-svn: 308618
Test constant folding both on node creation (which already works) and once the input nodes have been folded themselves (not working yet).
llvm-svn: 308611
This patch adds handling of the `long_call`, `far`, and `near`
attributes passed by front-end. The patch depends on D35479.
Differential revision: https://reviews.llvm.org/D35480.
llvm-svn: 308606
Most combines currently recognise scalar and splat-vector constants, but not non-uniform vector constants.
This patch introduces a matching mechanism that uses predicates to check against BUILD_VECTOR of ConstantSDNode, as well as scalar ConstantSDNode cases.
I've changed a couple of predicates to demonstrate - the combine-shl changes add currently unsupported cases, while the MatchRotate replaces an existing mechanism.
Differential Revision: https://reviews.llvm.org/D35492
llvm-svn: 308598
Introduced FSELECT node necesary when lowering ISD::SELECT
which has i32, f64, f64 as its operands.
SEL_D instruction required that its output and first operand
of a SELECT node, which it used, have matching types.
MTC1_D64 node introduced to aid FSELECT lowering.
This fixes machine verifier errors on following tests:
CodeGen/Mips/llvm-ir/select-dbl.ll
CodeGen/Mips/llvm-ir/select-flt.ll
CodeGen/Mips/select.ll
Differential Revision: https://reviews.llvm.org/D35408
llvm-svn: 308595
Add optimization remarks support to the PrologueEpilogueInserter. For
now, emit the stack size as an analysis remark, but more additions wrt
shrink-wrapping may be added.
https://reviews.llvm.org/D35645
llvm-svn: 308556