the result, turn signed shift rights into unsigned shift rights if possible.
This leads to later simplification and happens *often* in 176.gcc. For example,
this testcase:
struct xxx { unsigned int code : 8; };
enum codes { A, B, C, D, E, F };
int foo(struct xxx *P) {
if ((enum codes)P->code == A)
bar();
}
used to be compiled to:
int %foo(%struct.xxx* %P) {
%tmp.1 = getelementptr %struct.xxx* %P, int 0, uint 0 ; <uint*> [#uses=1]
%tmp.2 = load uint* %tmp.1 ; <uint> [#uses=1]
%tmp.3 = cast uint %tmp.2 to int ; <int> [#uses=1]
%tmp.4 = shl int %tmp.3, ubyte 24 ; <int> [#uses=1]
%tmp.5 = shr int %tmp.4, ubyte 24 ; <int> [#uses=1]
%tmp.6 = cast int %tmp.5 to sbyte ; <sbyte> [#uses=1]
%tmp.8 = seteq sbyte %tmp.6, 0 ; <bool> [#uses=1]
br bool %tmp.8, label %then, label %UnifiedReturnBlock
Now it is compiled to:
%tmp.1 = getelementptr %struct.xxx* %P, int 0, uint 0 ; <uint*> [#uses=1]
%tmp.2 = load uint* %tmp.1 ; <uint> [#uses=1]
%tmp.2 = cast uint %tmp.2 to sbyte ; <sbyte> [#uses=1]
%tmp.8 = seteq sbyte %tmp.2, 0 ; <bool> [#uses=1]
br bool %tmp.8, label %then, label %UnifiedReturnBlock
which is the difference between this:
foo:
subl $4, %esp
movl 8(%esp), %eax
movl (%eax), %eax
shll $24, %eax
sarl $24, %eax
testb %al, %al
jne .LBBfoo_2
and this:
foo:
subl $4, %esp
movl 8(%esp), %eax
movl (%eax), %eax
testb %al, %al
jne .LBBfoo_2
This occurs 3243 times total in the External tests, 215x in povray,
6x in each f2c'd program, 1451x in 176.gcc, 7x in crafty, 20x in perl,
25x in gap, 3x in m88ksim, 25x in ijpeg.
Maybe this will cause a little jump on gcc tommorow :)
llvm-svn: 21715
This implements set.ll:test20.
This triggers 2x on povray, 9x on mesa, 11x on gcc, 2x on crafty, 1x on eon,
6x on perlbmk and 11x on m88ksim.
It allows us to compile these two functions into the same code:
struct s { unsigned int bit : 1; };
unsigned foo(struct s *p) {
if (p->bit)
return 1;
else
return 0;
}
unsigned bar(struct s *p) { return p->bit; }
llvm-svn: 21690
library function:
isdigit(chr) -> 0 or 1 if chr is constant
isdigit(chr) -> chr - '0' <= 9 otherwise
Although there are many calls to isdigit in llvm-test, most of them are
compiled away by macros leaving only this:
2 MultiSource/Applications/hexxagon
llvm-svn: 21688
actual spec (int -> uint)
* Add the ability to get/cache the strlen function prototype.
* Make sure generated values are appropriately named for debugging purposes
* Add the SPrintFOptimiation for 4 casts of sprintf optimization:
sprintf(str,cstr) -> llvm.memcpy(str,cstr) (if cstr has no %)
sprintf(str,"") -> store sbyte 0, str
sprintf(str,"%s",src) -> llvm.memcpy(str,src) (if src is constant)
sprintf(str,"%c",chr) -> store chr, str ; store sbyte 0, str+1
The sprintf optimization didn't fire as much as I had hoped:
2 MultiSource/Applications/SPASS
5 MultiSource/Benchmarks/McCat/18-imp
22 MultiSource/Benchmarks/Prolangs-C/TimberWolfMC
1 MultiSource/Benchmarks/Prolangs-C/assembler
6 MultiSource/Benchmarks/Prolangs-C/unix-smail
2 MultiSource/Benchmarks/mediabench/mpeg2/mpeg2dec
llvm-svn: 21679
Neither of these activated as many times as was hoped:
strchr:
9 MultiSource/Applications/siod
1 MultiSource/Applications/d
2 MultiSource/Prolangs-C/archie-client
1 External/SPEC/CINT2000/176.gcc/176.gcc
llvm.memset:
no hits
llvm-svn: 21669
strings passed to Statistic's constructor are not destructable. The stats
are printed during static destruction and the SimplifyLibCalls module was
getting destructed before the statistics.
llvm-svn: 21661
type be obtained from a CallInst we're optimizing.
* Make it possible for getConstantStringLength to return the ConstantArray
that it extracts in case the content is needed by an Optimization.
* Implement the strcmp optimization
* Implement the toascii optimization
This pass is now firing several to many times in the following MultiSource
tests:
Applications/Burg - 7 (strcat,strcpy)
Applications/siod - 13 (strcat,strcpy,strlen)
Applications/spiff - 120 (exit,fputs,strcat,strcpy,strlen)
Applications/treecc - 66 (exit,fputs,strcat,strcpy)
Applications/kimwitu++ - 34 (strcmp,strcpy,strlen)
Applications/SPASS - 588 (exit,fputs,strcat,strcpy,strlen)
llvm-svn: 21626
sinh, cosh, etc.
* Make the name comparisons for the fp libcalls a little more efficient by
switching on the first character of the name before doing comparisons.
llvm-svn: 21611
* Correct stale documentation in a few places
* Re-order the file to better associate things and reduce line count
* Make the pass thread safe by caching the Function* objects needed by the
optimizers in the pass object instead of globally.
* Provide the SimplifyLibCalls pass object to the optimizer classes so they
can access cached Function* objects and TargetData info
* Make sure the pass resets its cache if the Module passed to runOnModule
changes
* Rename CallOptimizer LibCallOptimization. All the classes are named
*Optimization while the objects are *Optimizer.
* Don't cache Function* in the optimizer objects because they could be used
by multiple PassManager's running in multiple threads
* Add an optimization for strcpy which is similar to strcat
* Add a "TODO" list at the end of the file for ideas on additional libcall
optimizations that could be added (get ideas from other compilers).
Sorry for the huge diff. Its mostly reorganization of code. That won't
happen again as I believe the design and infrastructure for this pass is
now done or close to it.
llvm-svn: 21589
call to them into an 'unreachable' instruction.
This triggers a bunch of times, particularly on gcc:
gzip: 36
gcc: 601
eon: 12
bzip: 38
llvm-svn: 21587
* MemCpyOptimization can only be optimized if the 3rd and 4th arguments are
constants and we weren't checking for that.
* The result of llvm.memcpy (and llvm.memmove) is void* not sbyte*, put in
a cast.
llvm-svn: 21570
* Have the SimplifyLibCalls pass acquire the TargetData and pass it down to
the optimization classes so they can use it to make better choices for
the signatures of functions, etc.
* Rearrange the code a little so the utility functions are closer to their
usage and keep the core of the pass near the top of the files.
* Adjust the StrLen pass to get/use the correct prototype depending on the
TargetData::getIntPtrType() result. The result of strlen is size_t which
could be either uint or ulong depending on the platform.
* Clean up some coding nits (cast vs. dyn_cast, remove redundant items from
a switch, etc.)
* Implement the MemMoveOptimization as a twin of MemCpyOptimization (they
only differ in name).
llvm-svn: 21569
named getConstantStringLength. This is the common part of StrCpy and
StrLen optimizations and probably several others, yet to be written. It
performs all the validity checks for looking at constant arrays that are
supposed to be null-terminated strings and then computes the actual
length of the string.
* Implement the MemCpyOptimization class. This just turns memcpy of 1, 2, 4
and 8 byte data blocks that are properly aligned on those boundaries into
a load and a store. Much more could be done here but alignment
restrictions and lack of knowledge of the target instruction set prevent
use from doing significantly more. That will have to be delegated to the
code generators as they lower llvm.memcpy calls.
llvm-svn: 21562