This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
printInst prints a branch/call instruction as `b offset` (there are many
variants on various targets) instead of `b address`.
It is a convention to use address instead of offset in most external
symbolizers/disassemblers. This difference makes `llvm-objdump -d`
output unsatisfactory.
Add `uint64_t Address` to printInst(), so that it can pass the argument to
printInstruction(). `raw_ostream &OS` is moved to the last to be
consistent with other print* methods.
The next step is to pass `Address` to printInstruction() (generated by
tablegen from the instruction set description). We can gradually migrate
targets to print addresses instead of offsets.
In any case, downstream projects which don't know `Address` can pass 0 as
the argument.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D72172
MipsMCAsmInfo was using '$' prefix for Mips32 and '.L' for Mips64
regardless of -target-abi option. By passing MCTargetOptions to MCAsmInfo
we can find out Mips ABI and pick appropriate prefix.
Tags: #llvm, #clang, #lldb
Differential Revision: https://reviews.llvm.org/D66795
Several LLVM tools write text files/streams without using OF_Text.
This can cause problems on platforms which distinguish between
text and binary output. This PR adds the OF_Text flag for the
following tools:
- llvm-dis
- llvm-dwarfdump
- llvm-mca
- llvm-mc (assembler files only)
- opt (assembler files only)
- RemarkStreamer (used e.g. by opt)
Reviewers: rnk, vivekvpandya, Bigcheese, andreadb
Differential Revision: https://reviews.llvm.org/D67696
llvm-svn: 374024
This adds a -mattr flag to llvm-mca, for cases where the -mcpu option does not
contain all optional features.
Differential Revision: https://reviews.llvm.org/D68190
llvm-svn: 373358
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Flag -show-encoding enables the printing of instruction encodings as part of the
the instruction info view.
Example (with flags -mtriple=x86_64-- -mcpu=btver2):
Instruction Info:
[1]: #uOps
[2]: Latency
[3]: RThroughput
[4]: MayLoad
[5]: MayStore
[6]: HasSideEffects (U)
[7]: Encoding Size
[1] [2] [3] [4] [5] [6] [7] Encodings: Instructions:
1 2 1.00 4 c5 f0 59 d0 vmulps %xmm0, %xmm1, %xmm2
1 4 1.00 4 c5 eb 7c da vhaddps %xmm2, %xmm2, %xmm3
1 4 1.00 4 c5 e3 7c e3 vhaddps %xmm3, %xmm3, %xmm4
In this example, column Encoding Size is the size in bytes of the instruction
encoding. Column Encodings reports the actual instruction encodings as byte
sequences in hex (objdump style).
The computation of encodings is done by a utility class named mca::CodeEmitter.
In future, I plan to expose the CodeEmitter to the instruction builder, so that
information about instruction encoding sizes can be used by the simulator. That
would be a first step towards simulating the throughput from the decoders in the
hardware frontend.
Differential Revision: https://reviews.llvm.org/D65948
llvm-svn: 368432
This patch adds a new llvm-mca flag named -print-imm-hex.
By default, the instruction printer prints immediate operands as decimals. Flag
-print-imm-hex enables the instruction printer to print those operands in hex.
This patch also adds support for MASM binary and hex literal numbers (example
0FFh, 101b).
Added tests to verify the behavior of the new flag. Tests also verify that masm
numeric literal operands are now recognized.
Differential Revision: https://reviews.llvm.org/D65588
llvm-svn: 367671
This patch slightly refactors data structures internally used by the bottleneck
analysis to track data and resource dependencies.
This patch also updates methods used to print out information about dependency
edges when in debug mode.
This is the last of a sequence of commits done in preparation for an upcoming
patch that fixes PR37494. No functional change intended.
llvm-svn: 363677
Bottleneck Analysis is one of the many views available in llvm-mca. Therefore,
it should be enabled when flag -all-views is passed in input to the tool.
llvm-svn: 362964
The resource pressure distribution computation is now delegated by class
BottleneckAnalysis to an instance of class PressureTracker.
Class PressureTracker is also responsible for:
- tracking users of processor resource units.
- tracking the number of delay cycles caused by increases in backpressure.
BottleneckAnalysis internally initializes a dependency graph. Each nodes
represents an instruction in the input code sequence. Edges of the dependency
graph are critical register/memory/resource dependencies. Dependencies are only
added to the graph if they are seen as critical by backend pressure events.
The DependencyGraph is currently unused. It is possible to print the dependency
graph (see method DependencyGraph::dump()) for debugging purposes.
The long term goal is to use the information stored by the dependency graph in
order to do critical path computation.
llvm-svn: 362246
This patch fixes PR41523
https://bugs.llvm.org/show_bug.cgi?id=41523
Regions can now nest/overlap provided that they have different names.
Anonymous regions cannot overlap.
Region end markers must specify the region name. The only exception is for when
there is only one user-defined region; in that particular case, the region end
marker doesn't need to specify a name.
Incorrect region end markers are no longer ignored. Instead, the tool reports an
error and we exit with an error code.
Added test cases to verify the new diagnostic error messages.
Updated the llvm-mca docs to reflect this feature change.
Differential Revision: https://reviews.llvm.org/D61676
llvm-svn: 360351
This patch adds an experimental stage named MicroOpQueueStage.
MicroOpQueueStage can be used to simulate a hardware micro-op queue (basically,
a decoupling queue between 'decode' and 'dispatch'). Users can specify a queue
size, as well as a optional MaxIPC (which - in the absence of a "Decoders" stage
- can be used to simulate a different throughput from the decoders).
This stage is added to the default pipeline between the EntryStage and the
DispatchStage only if PipelineOption::MicroOpQueue is different than zero. By
default, llvm-mca sets PipelineOption::MicroOpQueue to the value of hidden flag
-micro-op-queue-size.
Throughput from the decoder can be simulated via another hidden flag named
-decoder-throughput. That flag allows us to quickly experiment with different
frontend throughputs. For targets that declare a loop buffer, flag
-decoder-throughput allows users to do multiple runs, each time simulating a
different throughput from the decoders.
This stage can/will be extended in future. For example, we could add a "buffer
full" event to notify bottlenecks caused by backpressure. flag
-decoder-throughput would probably go away if in future we delegate to another
stage (DecoderStage?) the simulation of a (potentially variable) throughput from
the decoders. For now, flag -decoder-throughput is "good enough" to run some
simple experiments.
Differential Revision: https://reviews.llvm.org/D59928
llvm-svn: 357248
Found by inspection when looking at the debug output of MCA.
This problem was latent, and none of the upstream models were affected by it.
No functional change intended.
llvm-svn: 357000
Summary:
Since bottleneck hints are enabled via user request, it can be
confusing if no bottleneck information is presented. Such is the
case when no bottlenecks are identified. This patch emits a message
in that case.
Reviewers: andreadb
Reviewed By: andreadb
Subscribers: tschuett, gbedwell, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59098
llvm-svn: 355628
This patch adds a new flag named -bottleneck-analysis to print out information
about throughput bottlenecks.
MCA knows how to identify and classify dynamic dispatch stalls. However, it
doesn't know how to analyze and highlight kernel bottlenecks. The goal of this
patch is to teach MCA how to correlate increases in backend pressure to backend
stalls (and therefore, the loss of throughput).
From a Scheduler point of view, backend pressure is a function of the scheduler
buffer usage (i.e. how the number of uOps in the scheduler buffers changes over
time). Backend pressure increases (or decreases) when there is a mismatch
between the number of opcodes dispatched, and the number of opcodes issued in
the same cycle. Since buffer resources are limited, continuous increases in
backend pressure would eventually leads to dispatch stalls. So, there is a
strong correlation between dispatch stalls, and how backpressure changed over
time.
This patch teaches how to identify situations where backend pressure increases
due to:
- unavailable pipeline resources.
- data dependencies.
Data dependencies may delay execution of instructions and therefore increase the
time that uOps have to spend in the scheduler buffers. That often translates to
an increase in backend pressure which may eventually lead to a bottleneck.
Contention on pipeline resources may also delay execution of instructions, and
lead to a temporary increase in backend pressure.
Internally, the Scheduler classifies instructions based on whether register /
memory operands are available or not.
An instruction is marked as "ready to execute" only if data dependencies are
fully resolved.
Every cycle, the Scheduler attempts to execute all instructions that are ready
to execute. If an instruction cannot execute because of unavailable pipeline
resources, then the Scheduler internally updates a BusyResourceUnits mask with
the ID of each unavailable resource.
ExecuteStage is responsible for tracking changes in backend pressure. If backend
pressure increases during a cycle because of contention on pipeline resources,
then ExecuteStage sends a "backend pressure" event to the listeners.
That event would contain information about instructions delayed by resource
pressure, as well as the BusyResourceUnits mask.
Note that ExecuteStage also knows how to identify situations where backpressure
increased because of delays introduced by data dependencies.
The SummaryView observes "backend pressure" events and prints out a "bottleneck
report".
Example of bottleneck report:
```
Cycles with backend pressure increase [ 99.89% ]
Throughput Bottlenecks:
Resource Pressure [ 0.00% ]
Data Dependencies: [ 99.89% ]
- Register Dependencies [ 0.00% ]
- Memory Dependencies [ 99.89% ]
```
A bottleneck report is printed out only if increases in backend pressure
eventually caused backend stalls.
About the time complexity:
Time complexity is linear in the number of instructions in the
Scheduler::PendingSet.
The average slowdown tends to be in the range of ~5-6%.
For memory intensive kernels, the slowdown can be significant if flag
-noalias=false is specified. In the worst case scenario I have observed a
slowdown of ~30% when flag -noalias=false was specified.
We can definitely recover part of that slowdown if we optimize class LSUnit (by
doing extra bookkeeping to speedup queries). For now, this new analysis is
disabled by default, and it can be enabled via flag -bottleneck-analysis. Users
of MCA as a library can enable the generation of pressure events through the
constructor of ExecuteStage.
This patch partially addresses https://bugs.llvm.org/show_bug.cgi?id=37494
Differential Revision: https://reviews.llvm.org/D58728
llvm-svn: 355308
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
It's a bit tricky to add a test for the failing path right now, binary support will have an easier path to exercise the path here.
* Ran clang-format.
Reviewers: andreadb
Reviewed By: andreadb
Subscribers: tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D55803
llvm-svn: 349659
Class InstrBuilder wrongly assumed that llvm targets were always able to return
a non-null pointer when createMCInstrAnalysis() was called on them.
This was causing crashes when simulating executions for targets that don't
provide an MCInstrAnalysis object.
This patch fixes the issue by making MCInstrAnalysis optional.
llvm-svn: 349352
This patch adds the ability to specify via tablegen which processor resources
are load/store queue resources.
A new tablegen class named MemoryQueue can be optionally used to mark resources
that model load/store queues. Information about the load/store queue is
collected at 'CodeGenSchedule' stage, and analyzed by the 'SubtargetEmitter' to
initialize two new fields in struct MCExtraProcessorInfo named `LoadQueueID` and
`StoreQueueID`. Those two fields are identifiers for buffered resources used to
describe the load queue and the store queue.
Field `BufferSize` is interpreted as the number of entries in the queue, while
the number of units is a throughput indicator (i.e. number of available pickers
for loads/stores).
At construction time, LSUnit in llvm-mca checks for the presence of extra
processor information (i.e. MCExtraProcessorInfo) in the scheduling model. If
that information is available, and fields LoadQueueID and StoreQueueID are set
to a value different than zero (i.e. the invalid processor resource index), then
LSUnit initializes its LoadQueue/StoreQueue based on the BufferSize value
declared by the two processor resources.
With this patch, we more accurately track dynamic dispatch stalls caused by the
lack of LS tokens (i.e. load/store queue full). This is also shown by the
differences in two BdVer2 tests. Stalls that were previously classified as
generic SCHEDULER FULL stalls, are not correctly classified either as "load
queue full" or "store queue full".
About the differences in the -scheduler-stats view: those differences are
expected, because entries in the load/store queue are not released at
instruction issue stage. Instead, those are released at instruction executed
stage. This is the main reason why for the modified tests, the load/store
queues gets full before PdEx is full.
Differential Revision: https://reviews.llvm.org/D54957
llvm-svn: 347857
This reapplies r347767 (originally reviewed at: https://reviews.llvm.org/D55000)
with a fix for the missing std::move of the Error returned by the call to
Pipeline::runCycle().
Below is the original commit message from r347767.
If a user only cares about the overall latency, then the best/quickest way is to
change method Pipeline::run() so that it returns the total number of cycles to
the caller.
When the simulation pipeline is run, the number of cycles (or an error) is
returned from method Pipeline::run().
The advantage is that no hardware event listener is needed for computing that
latency. So, the whole process should be faster (and simpler - at least for that
particular use case).
llvm-svn: 347795
If a user only cares about the overall latency, then the best/quickest way is to
change method Pipeline::run() so that it returns the total number of cycles to
the caller.
When the simulation pipeline is run, the number of cycles (or an error) is
returned from method Pipeline::run().
The advantage is that no hardware event listener is needed for computing that
latency. So, the whole process should be faster (and simpler - at least for that
particular use case).
llvm-svn: 347767
RetireControlUnitStatistics now reports extra information about the ROB and the
avg/maximum number of entries consumed over the entire simulation.
Example:
Retire Control Unit - number of cycles where we saw N instructions retired:
[# retired], [# cycles]
0, 109 (17.9%)
1, 102 (16.7%)
2, 399 (65.4%)
Total ROB Entries: 64
Max Used ROB Entries: 35 ( 54.7% )
Average Used ROB Entries per cy: 32 ( 50.0% )
Documentation in llvm/docs/CommandGuide/llvmn-mca.rst has been updated to
reflect this change.
llvm-svn: 347493
This fixes PR39261.
FetchStage is a misnomer. It causes confusion with the frontend fetch stage,
which we don't currently simulate. I decided to rename it into EntryStage
mainly because this is meant to be a "source" stage for all pipelines.
Differential Revision: https://reviews.llvm.org/D54268
llvm-svn: 346419
Summary:
This patch introduces a CodeRegionGenerator class which is responsible for parsing some type of input and creating a 'CodeRegions' instance for use by llvm-mca. In the future, we will also have a CodeRegionGenerator subclass for converting an input object file into CodeRegions. For now, we only have the subclass for converting input assembly into CodeRegions.
This is mostly a NFC patch, as the logic remains close to the original, but now encapsulated in its own class and moved outside of llvm-mca.cpp.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: mgorny, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D54179
llvm-svn: 346344
Before this change, the lowering of instructions from llvm::MCInst to
mca::Instruction was done as part of the first stage of the pipeline (i.e. the
FetchStage). In particular, FetchStage was responsible for picking the next
instruction from the source sequence, and lower it to an mca::Instruction with
the help of an object of class InstrBuilder.
The dependency on InstrBuilder was problematic for a number of reasons. Class
InstrBuilder only knows how to lower from llvm::MCInst to mca::Instruction.
That means, it is hard to support a different scenario where instructions
in input are not instances of class llvm::MCInst. Even if we managed to
specialize InstrBuilder, and generalize most of its internal logic, the
dependency on InstrBuilder in FetchStage would have caused more troubles (other
than complicating the pipeline logic).
With this patch, the lowering step is done before the pipeline is run. The
pipeline is no longer responsible for lowering from MCInst to mca::Instruction.
As a consequence of this, the FetchStage no longer needs to interact with an
InstrBuilder. The mca::SourceMgr class now simply wraps a reference to a
sequence of mca::Instruction objects.
This simplifies the logic of FetchStage, and increases the usability of it. As
a result, on a debug build, we see a 7-9% speedup; on a release build, the
speedup is around 3-4%.
llvm-svn: 345500
Also, removed the initialization of vectors used for processor resource masks.
Support function 'computeProcResourceMasks()' already calls method resize on
those vectors.
No functional change intended.
llvm-svn: 345161
A new class named InstructionError has been added to Support.h in order to
improve the error reporting from class InstrBuilder.
The llvm-mca driver is responsible for handling InstructionError objects, and
printing them out to stderr.
The goal of this patch is to remove all the remaining error handling logic from
the library code.
In particular, this allows us to:
- Simplify the logic in InstrBuilder by removing a needless dependency from
MCInstrPrinter.
- Centralize all the error halding logic in a new function named 'runPipeline'
(see llvm-mca.cpp).
This is also a first step towards generalizing class InstrBuilder, so that in
future, we will be able to reuse its logic to also "lower" MachineInstr to
mca::Instruction objects.
Differential Revision: https://reviews.llvm.org/D53585
llvm-svn: 345129
Summary:
This patch introduces llvm-mca as a library. The driver (llvm-mca.cpp), views, and stats, are not part of the library.
Those are separate components that are not required for the functioning of llvm-mca.
The directory has been organized as follows:
All library source files now reside in:
- `lib/HardwareUnits/` - All subclasses of HardwareUnit (these represent the simulated hardware components of a backend).
(LSUnit does not inherit from HardwareUnit, but Scheduler does which uses LSUnit).
- `lib/Stages/` - All subclasses of the pipeline stages.
- `lib/` - This is the root of the library and contains library code that does not fit into the Stages or HardwareUnit subdirs.
All library header files now reside in the `include` directory and mimic the same layout as the `lib` directory mentioned above.
In the (near) future we would like to move the library (include and lib) contents from tools and into the core of llvm somewhere.
That change would allow various analysis and optimization passes to make use of MCA functionality for things like cost modeling.
I left all of the non-library code just where it has always been, in the root of the llvm-mca directory.
The include directives for the non-library source file have been updated to refer to the llvm-mca library headers.
I updated the llvm-mca/CMakeLists.txt file to include the library headers, but I made the non-library code
explicitly reference the library's 'include' directory. Once we eventually (hopefully) migrate the MCA library
components into llvm the include directives used by the non-library source files will be updated to point to the
proper location in llvm.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: mgorny, javed.absar, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D50929
llvm-svn: 340755
Summary:
This patch introduces error handling to propagate the errors from llvm-mca library classes (or what will become library classes) up to the driver. This patch also introduces an enum to make clearer the intention of the return value for Stage::execute.
This supports PR38101.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: llvm-commits, tschuett, gbedwell
Differential Revision: https://reviews.llvm.org/D50561
llvm-svn: 339594