Summary:
Use a nested symbol to identify the kernel to be invoked by a `LaunchFuncOp` in the GPU dialect.
This replaces the two attributes that were used to identify the kernel module and the kernel within seperately.
Differential Revision: https://reviews.llvm.org/D78551
We also need to lock the LLVMDialect mutex when initializing
LLVM targets or destroying llvm modules concurrently. Added another
scoped lock to that effect.
Differential Revision: https://reviews.llvm.org/D78580
The buffer allocated by a promotion can be subject to other transformations afterward. For example it could be vectorized, in which case it is needed to ensure that this buffer is memory-aligned.
Differential Revision: https://reviews.llvm.org/D78556
This revision is the first in a set of improvements that aim at allowing
more generalized named Linalg op generation from a mathematical
specification.
This revision allows creating a new op and checks that the parser,
printer and verifier are hooked up properly.
This opened up a few design points that will be addressed in the future:
1. A named linalg op has a static region builder instead of an
explicitly parsed region. This is not currently compatible with
assemblyFormat so a custom parser / printer are needed.
2. The convention for structured ops and tensor return values needs to
evolve to allow tensor-land and buffer land specifications to agree
3. ReferenceIndexingMaps and referenceIterators will need to become
static to allow building attributes at parse time.
4. Error messages will be improved once we have 3. and we pretty print
in custom form.
Differential Revision: https://reviews.llvm.org/D78327
This is possible by adding two new ControlFlowInterface additions:
- A new interface, RegionBranchOpInterface
This interface allows for region holding operations to describe how control flows between regions. This interface initially contains two methods:
* getSuccessorEntryOperands
Returns the operands of this operation used as the entry arguments when entering the region at `index`, which was specified as a successor by `getSuccessorRegions`. when entering. These operands should correspond 1-1 with the successor inputs specified in `getSuccessorRegions`, and may be a subset of the entry arguments for that region.
* getSuccessorRegions
Returns the viable successors of a region, or the possible successor when branching from the parent op. This allows for describing which regions may be executed when entering an operation, and which regions are executed after having executed another region of the parent op. For example, a structured loop operation may always enter into the loop body region. The loop body region may branch back to itself, or exit to the operation.
- A trait, ReturnLike
This trait signals that a terminator exits a region and forwards all of its operands as "exiting" values.
These additions allow for performing more general dataflow analysis in the presence of region holding operations.
Differential Revision: https://reviews.llvm.org/D78447
This revision adds the initial pass for performing SCCP generically in MLIR. SCCP is an algorithm for propagating constants across control flow, and optimistically assumes all values to be constant unless proven otherwise. It currently supports branching control, with support for regions and inter-procedural propagation being added in followups.
Differential Revision: https://reviews.llvm.org/D78397
The promotion transformation is promoting all input and output buffers of the transformed op. The user might want to only promote some of these buffers.
Differential Revision: https://reviews.llvm.org/D78498
The previous code result a mismatch between block argument types and
predecessor successor args when a type conversion was needed in a
multiblock case. It was assuming the replaced result types matched the
region result types.
Also, slighly improve the debug output from the inliner.
Differential Revision: https://reviews.llvm.org/D78415
Fix intra-tile upper bound setting in a scenario where the tile size was
larger than the trip count.
Differential Revision: https://reviews.llvm.org/D78505
memref types with dynamic dimensions do not have a compile-time
known size. They should be mapped to SPIR-V runtime array types.
Differential Revision: https://reviews.llvm.org/D78197
Rename mlir::tileCodeGen -> mlir::tilePerfectlyNested to be consistent.
NFC clean up tiling utility code, drop dead code, better comments.
Expose isPerfectlyNested and reuse.
Differential Revision: https://reviews.llvm.org/D78423
Summary:
Workgroup size is written into the kernel. So to properly modelling
vulkan launch, we have to skip local workgroup size for vulkan launch
call op.
Differential Revision: https://reviews.llvm.org/D78307
Summary:
Rather than having a full, recursive, lowering of vector.broadcast
to LLVM IR, it is much more elegant to have a progressive lowering
of each vector.broadcast into a lower dimensional vector.broadcast,
until only elementary vector operations remain. This results
in more elegant, step-wise code, that is easier to understand.
Also makes some optimizations in the generated code.
Reviewers: nicolasvasilache, mehdi_amini, andydavis1, grosul1
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78071
add_llvm_library() sometimes needs access to the dependencies in order to
generate new targets. Using DEPENDS allows this.
Differential Revision: https://reviews.llvm.org/D78321
Libraries declared as target_link_libraries() do not also need
to be declared as dependencies using add_dependencies().
Differential Revision: https://reviews.llvm.org/D78320
MLIR supports operations with resizable operand lists, but this property must
be indicated during the construction of such operations. It can be done
programmatically by calling a function on OperationState. Introduce an
ODS-internal trait `ResizableOperandList` to indicate such operations are use
it when generating the bodies of various `build` functions as well as the
`parse` function when the declarative assembly format is used.
Differential Revision: https://reviews.llvm.org/D78292
There were some unused CMakeFiles for Affine/IR and Affine/EDSC.
This change builds separate MLIRAffineOps and MLIRAffineEDSC libraries
using those CMakeFiles. This combination replaces the old MLIRAffine
library.
Differential Revision: https://reviews.llvm.org/D78317
This will fix a failure when using a linker sensitive to the order in
which libraries are passed.
Differential Revision: https://reviews.llvm.org/D78303
The function attribute in generic ops is not paying for itself.
A region is the more standardized way of specifying a custom computation.
If needed this region can call a function directly.
This is deemed more natural than managing a dedicated function attribute.
This also simplifies named ops generation by trimming unnecessary complexity.
Differential Revision: https://reviews.llvm.org/D78266
This change makes the ModuleTranslation threadsafe by locking on the
LLVMContext. Furthermore, we now clone the llvm module into a new
context when compiling to PTX similar to what the OrcJit does.
Differential Revision: https://reviews.llvm.org/D78207
This avoids asan failures as more calls may be added during inlining, invalidating the reference.
Differential Revision: https://reviews.llvm.org/D78258
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
This revision introduces a utility to unswitch affine.for/parallel loops
by hoisting affine.if operations past surrounding affine.for/parallel.
The hoisting works for both perfect/imperfect nests and in the presence
of else blocks. The hoisting is currently to as outermost a level as
possible. Uses a test pass to test the utility.
Add convenience method Operation::getParentWithTrait<Trait>.
Depends on D77487.
Differential Revision: https://reviews.llvm.org/D77870
Similarly to actual LLVM IR, and to `llvm.mlir.func`, allow the custom syntax
of `llvm.mlir.global` to omit the linkage keyword. If omitted, the linkage is
assumed to be external. This makes the modeling of globals in the LLVM dialect
more consistent, both within the dialect and with LLVM IR.
Differential Revision: https://reviews.llvm.org/D78096
Introduce mlir::applyOpPatternsAndFold which applies patterns as well as
any folding only on a specified op (in contrast to
applyPatternsAndFoldGreedily which applies patterns only on the regions
of an op isolated from above). The caller is made aware of the op being
folded away or erased.
Depends on D77485.
Differential Revision: https://reviews.llvm.org/D77487
Summary:
This revision adds two utilities currently present in MLIR to LLVM StringExtras:
* convertToSnakeFromCamelCase
Convert a string from a camel case naming scheme, to a snake case scheme
* convertToCamelFromSnakeCase
Convert a string from a snake case naming scheme, to a camel case scheme
Differential Revision: https://reviews.llvm.org/D78167
Integer type in Std dialect is signless so we should be checking
for signless integer type instead of signed integer type in EDSC.
Differential Revision: https://reviews.llvm.org/D78144
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionality. Each `Case<T>` takes a callable to be invoked if the root value isa<T>, the callable is invoked with the result of dyn_cast<T>() as a parameter.
Differential Revision: https://reviews.llvm.org/D78070
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.
Differential Revision: https://reviews.llvm.org/D78067
This revision moves the various range utilities present in MLIR to LLVM to enable greater reuse. This revision moves the following utilities:
* indexed_accessor_*
This is set of utility iterator/range base classes that allow for building a range class where the iterators are represented by an object+index pair.
* make_second_range
Given a range of pairs, returns a range iterating over the `second` elements.
* hasSingleElement
Returns if the given range has 1 element. size() == 1 checks end up being very common, but size() is not always O(1) (e.g., ilist). This method provides O(1) checks for those cases.
Differential Revision: https://reviews.llvm.org/D78064
This revision moves several type_trait utilities from MLIR into LLVM. Namely, this revision adds:
is_detected - This matches the experimental std::is_detected
is_invocable - This matches the c++17 std::is_invocable
function_traits - A utility traits class for getting the argument and result types of a callable type
Differential Revision: https://reviews.llvm.org/D78059
The inversePermutation method returns a null map on failure. Update
uses of this method within Linalg to handle this. In LinalgToLoops the
null return value was used to emit scalar code. Modify that to return
failure, and emit scalar implementation when affine map is "empty",
i.e. 1 dims, 0 symbols and no result exprs.
Differential Revision: https://reviews.llvm.org/D77964
Summary:
This operation occurs during collapseParallelLoops, so we constant fold
them also to allow more situations of determining a loop invariant upper
bound when lowering to the GPU dialect from the Loop dialect.
Differential Revision: https://reviews.llvm.org/D77723
This makes no impact on the test cases because affine-data-copy-generate
runs whole function canonicalization at its end; however, the latter
will be removed in a pending revision. It is thus useful to clean up
these affine.applys right here, and eventually, not even generate
these (when the right API to compose by construction is in place).
Differential Revision: https://reviews.llvm.org/D78055