Make necessary changes to support DIV -> [SUF]Div. This changes llvm to
have three division instructions: signed, unsigned, floating point. The
bytecode and assembler are bacwards compatible, however.
llvm-svn: 31195
This patch implements the first increment for the Signless Types feature.
All changes pertain to removing the ConstantSInt and ConstantUInt classes
in favor of just using ConstantInt.
llvm-svn: 31063
into the LLVMAnalysis library.
This allows LLVMTranform and LLVMTransformUtils to be archives and linked
with LLVMAnalysis.a, which provides any missing definitions.
llvm-svn: 24036
If we fold three constants together (c1+c2+c3), make sure to keep
LHSC updated, instead of reusing (in this case), the 1 instead of the
partial sum.
llvm-svn: 20337
infinite loops (using the new replaceSymbolicValuesWithConcrete method).
This patch reverts this patch:
http://mail.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20050131/023830.html
... which was an attempted fix for this problem. Unfortunately, that patch
caused test/Regression/Transforms/IndVarsSimplify/exit_value_tests.llx to fail
and slightly castrated the entire analysis. This patch fixes it right.
This patch is dedicated to jeffc, for making me deal with this. :)
llvm-svn: 20146
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
llvm-svn: 16926
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.
llvm-svn: 16137
operations. This allows us to compile this testcase:
int main() {
int h = 1;
do h = 3 * h + 1; while (h <= 256);
printf("%d\n", h);
return 0;
}
into this:
int %main() {
entry:
call void %__main( )
%tmp.6 = call int (sbyte*, ...)* %printf( sbyte* getelementptr ([4 x sbyte]* %.str_1, long 0, long 0), int 364 ) ; <int> [#uses=0]
ret int 0
}
This testcase was taken directly from 256.bzip2, believe it or not.
This code is not as general as I would like. Next up is to refactor it
a bit to handle more cases.
llvm-svn: 13019
even if the loop is using expressions that we can't compute as a closed-form.
This allows us to calculate that this function always returns 55:
int test() {
double X;
int Count = 0;
for (X = 100; X > 1; X = sqrt(X), ++Count)
/*empty*/;
return Count;
}
And allows us to compute trip counts for loops like:
int h = 1;
do h = 3 * h + 1; while (h <= 256);
(which occurs in bzip2), and for this function, which occurs after inlining
and other optimizations:
int popcount()
{
int x = 666;
int result = 0;
while (x != 0) {
result = result + (x & 0x1);
x = x >> 1;
}
return result;
}
We still cannot compute the exit values of result or h in the two loops above,
which means we cannot delete the loop, but we are getting closer. Being able to
compute a constant trip count for these two loops will allow us to unroll them
completely though.
llvm-svn: 13017
at the bottom of the loop instead of the top. This reduces the number of
overlapping live ranges a lot, for example, eliminating a spill in an important
loop in 183.equake with linear scan.
I still need to make the exit comparison of the loop use the post-incremented
version of this variable, but this is an easy first step.
llvm-svn: 12952