tracks which elements of the build vector are in fact undef.
This should make actually inpsecting them (likely in my next patch)
reasonably pretty. Also makes the output parameter optional as it is
clear now that *most* users are happy with undefs in their splats.
llvm-svn: 212581
Summary: This test ensures that we can correctly specify a full Windows path to the clang ASAN runtime libraries. This is in preparation to fix PR20246.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4427
llvm-svn: 212580
This will allow the "-s" flag to implemented in the future as it
is in darwin’s nm(1) to list symbols only in the specified section.
Given a LGTM by Shankar Easwaran who originally implemented
the support for lvm-nm’s -print-armap and archive map symbols.
llvm-svn: 212576
Loading will generally extend to an f32 or an 64, so make sure
to match those patterns directly to load into the FPR16 register
class directly rather than going through the integer GPRs.
This also eliminates an extra step in the convert-to-f64 path
which was first converting to f32 and then to f64 from there.
rdar://17594379
llvm-svn: 212573
BasicAA contains knowledge of certain intrinsics, such as memcpy and memset,
and uses that information to form more-accurate answers to CallSite vs. Loc
ModRef queries. Unfortunately, it did not use this information when answering
CallSite vs. CallSite queries.
Generically, when an intrinsic takes one or more pointers and the intrinsic is
marked only to read/write from its arguments, the offset/size is unknown. As a
result, the generic code that answers CallSite vs. CallSite (and CallSite vs.
Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's
arguments. While BasicAA's CallSite vs. Loc override could use more-accurate
size information for some intrinsics, it did not do the same for CallSite vs.
CallSite queries.
This change refactors the intrinsic-specific logic in BasicAA into a generic AA
query function: getArgLocation, which is overridden by BasicAA to supply the
intrinsic-specific knowledge, and used by AA's generic implementation. This
allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and
CallSite vs. CallSite queries, and simplifies the BasicAA implementation.
Currently, only one function, Mac's memset_pattern16, is handled by BasicAA
(all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's
getModRefBehavior override now also returns OnlyAccessesArgumentPointees for
this function (which is an improvement).
llvm-svn: 212572
Previously the alignment of the .bss section was not
properly set because of a bug in AtomizeDefinedSymbolsInSection.
We set the alignment of the section at the end of the function,
but we use an eraly return for the .bss section, so the code had
been skipped.
llvm-svn: 212571
If we want to resolve the remaining FIXMEs here, we probably want to
extend the main lookup mechanism to perform lookup into dependent bases,
but we would have to tread lightly. Adding more name lookup has major
impact on compile time.
If we did extend the main mechanism, we would add a flag to LookupResult
that allows us to find names from dependent base classes where the base
is a specialization of a known template. The final LookupResult would
still return LookupResult::NotFoundInCurrentInstantiation, but it would
have a collection of Decls. If we find a real lookup result, we would
clear the flag and the existing lookup results and begin accumulating
only real lookup results.
We would structure the lookup as a secondary lookup between normal
lookup and typo correction for normal compilation, but for MSVC
compatibility mode, we would always enable this extra lookup into
dependent bases.
llvm-svn: 212566
This merges the two tests into one since there is no real reason to separate
them. It also fixes the test invocation to specify -fms-compatibility without
which we would end up without an Intrin.h header.
llvm-svn: 212563
MSVC appears to perform name lookup into dependent base classes when the
dependent base class has a known primary template. This allows them to
know whether some unqualified ids are types or not, which allows them to
parse more class templates without typename keywords.
We can do the same thing when type name lookup fails, and if we find a
single type decl in one of our dependent base classes, recover as though
the user wrote 'typename MyClass::TypeFromBase'.
This allows us to parse some COM smart pointer classes in wrl/client.h
from the Windows 8 SDK.
Reviewers: rsmith
Differential Revision: http://reviews.llvm.org/D4237
llvm-svn: 212561
Also provide _setjmpex(). r200243 put in _setjmp() and _setjmpex() behind a
comment since jmp_buf wasn't available. r200344 added jmp_buf and put in
_setjmp(), but missed _setjmpex().
llvm-svn: 212557
This reverts commit 5b55a47e94e28fbb56d0cd5d72c3db9105c15b4c.
A test case was found to crash after this was applied. I'll file a bug to track fixing this with the test case needed.
llvm-svn: 212550
On MacOSX, we need to adjust the way we clean up the crashlog dylib in deleteCrashInfoDylib().
Right now it is only geared to run one test at a time. For now I'm just skipping the delete.
I'll work with Apple on a fix that handles this. It seems to only cause one dylib total to
hang around that might otherwise have been deleted. Fixes MacOSX multiple tests running
at the same time. (I didn't hit this on Yosemite, might be an issue that only shows up
on Mavericks?)
llvm-svn: 212548
This changes the implementation of atomic NAND operations
from "a & ~b" (compatible with GCC < 4.4) to actual "~(a & b)"
(compatible with GCC >= 4.4).
This is in line with the common-code and ARM back-end change
implemented in r212433.
llvm-svn: 212547
This reverses out the options validators changes. We'll get these
back in once the changes to the output can be resolved.
Restores broken tests on FreeBSD, Linux, MacOSX.
Changes reverted: r212500, r212317, r212290.
llvm-svn: 212543
- Remove unused includes.
- Minor wording fix.
- Added support to check for clang-tidy messages to check_clang_tidy_fix.sh
= Updated test case.
llvm-svn: 212540
This patch teaches how to fold a shuffle according to rule:
shuffle (shuffle (x, undef, M0), undef, M1) -> shuffle(x, undef, M2)
We do this only if the resulting mask M2 is legal; this is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence
of target specific dag nodes.
This patch has the advantage of being target independent, since it works on ISD
nodes. Therefore, all targets (not only x86) can take advantage of this rule.
The idea behind this patch is that most shuffle pairs can be safely combined
before we run the legalizer on vector operations. This allows us to
combine/simplify dag nodes earlier in the process and not only immediately
before instruction selection stage.
That said. This patch is not meant to replace any existing target specific
combine rules; backends might still introduce new shuffles during legalization
stage. Also, this rule is very simple and avoids to aggressively optimize
shuffles.
llvm-svn: 212539
Those often cause use after free bugs and should be generally avoided.
Technically it is safe to have a Twine with >=2 components in a variable
but I don't think it is a good pattern to follow. The almost trivial checker
comes with elaborated fix-it hints that turn the Twine into a std::string
if necessary and otherwise fall back to the original type if the Twine
is created from a single value.
llvm-svn: 212535