Summary: Because SamplePGO passes will be invoked twice in ThinLTO build: once at compile phase, the other at backend. We want to make sure the IR at the 2nd phase matches the hot part in profile, thus we do not want to inline hot callsites in the first phase.
Reviewers: tejohnson, eraman
Reviewed By: tejohnson
Subscribers: mehdi_amini, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D31201
llvm-svn: 298428
Bug-Point functionality needs extending due to the patch D29185 by bd1976llvm (Allow llvm's build and test systems to support paths with spaces ). It requires Bugpoint to accept the use of spaces within ‘--compile-command’ tokens.
Details
Bugpoint uses the argument ‘--compile-command’ to pass in a command line argument as a string, the string is tokenized by the ‘lexCommand’ function using spaces as a delimiter. Patch D29185 will cause the unit test compile-custom.ll to fail as spaces are now required within tokens and as a delimiter. This patch allows the use of escape characters as below:
Two consecutive '\' evaluate to a single '\'.
A space after a '\' evaluates to a space that is not interpreted as a delimiter.
Any other instances of the '\' character are removed.
Committed on behalf of Owen Reynolds
Differential revision: https://reviews.llvm.org/D29940
llvm-svn: 296763
CrashDebugger.cpp has the following include chain:
llvm/Analysis/TargetTransformInfo.h
llvm/IR/IntrinsicInst.h
llvm/IR/Function.h
llvm/IR/Argument.h
llvm/IR/Attributes.h
llvm/IR/Attributes.gen
This means bugpoint needs to depend on intrinsics_gen.
llvm-svn: 287402
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
Thanks to Adrian Prantl for stewarding this patch!
llvm-svn: 285094
debugger.
When bugpoint hacks at a testcase it may at one point create illegal
debug info metadata that won't even pass the Verifier. A bugpoint
*driver* built with assertions should not assert on it, but reject the
malformed intermediate step and continue to do its job.
llvm-svn: 284490
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
llvm-svn: 283473
It got disconnected during the cmake conversion. For Miscompilation.cpp,
it was purely advisory for the user and the ToolRunner.cpp version was
trying to compensate for libs and bins in the same directory, which
hasn't been the case for a very long time.
llvm-svn: 283022
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
This change ensures all necessary symbols are resolved correctly. Before this
change on some systems, the linker may have eliminated some symbols not directly
used in bugpoint, but used in Polly.
Suggested-by: Michael Kruse <lvm@meinersbur.de>
llvm-svn: 281438
This replaces the threading of `std::string &Error` through all of
these APIs with checked Error returns instead. There are very few
places here that actually emit any errors right now, but threading the
APIs through will allow us to replace a bunch of exit(1)'s that are
scattered through this code with proper error handling.
This is more or less NFC, but does move around where a couple of error
messages are printed out.
llvm-svn: 280720
This isn't the right thing to do - it turns out a number of the APIs
that "never fail" just exit(1) if something bad happens. We can and
should thread Error through this instead.
That diff will make more sense with this reverted. Sorry for the
noise.
This reverts r280690
llvm-svn: 280691
This simplifies ListReducer and most of its subclasses by removing the
std::string &Error that was threaded through all of them but almost
never used. If we end up needing error handling in more places here we
can reinstate it using llvm::Error instead of these unwieldy strings.
The 2 cases (out of 12) that actually can hit the error cases are a
little bit awkward now, but those will clean up as I refactor this API
further.
llvm-svn: 280690
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
Summary:
Depends on D22841
We now use a much simpler CFG simplification routine for bugpoint,
because SimplifyCFG is no longer a good match for what bugpoint wants
to do.
At the same time, to make sure we don't lose anything valuable it was doing,
SimplifyCFG is now run as a per-BB reduction pass.
With this and D22841 combined, bugpoint operates both much faster on
the large testcases i have, and reduces them to pretty much minimal
testcases (in one case, bugpoint used to leave about 6000 useless blocks, and
now it leaves 3 ...)
Reviewers: chandlerc, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22845
llvm-svn: 277063
Summary:
Add a pass to bugpoint to make it transform conditional jumps into unconditional jumps.
Often, bugpoint generates output that has large numbers of br undef jumps, where
one side is dead.
What is happening is two fold:
1. It never tries to just pick a direction for the jump, and just see what happens
<<<< this patch
2. SimplifyCFG no longer is a good match for bugpoint's usecase. It
does too much.
Even things in SimplifyCFG, like removeUnreachableBlocks, go to great
lengths to transform undefined behavior into blocks and kill large
parts of the CFG. This is great for regular code, not so much for
bugpoint, which often generates UB on purpose (store undef is a great
example).
<<<< a followup patch that is coming, to move simplifycfg into a
separate reduction pass, and move the existing reduceCrashingBlocks
pass to use simpleSimplifyCFG.
Both of these patches significantly reduce the size and complexity of bugpoint
generated testcases.
Reviewers: chandlerc, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22841
llvm-svn: 276884
The default behavior of bugpoint is to print "<crash>" when it finds a reduced
test that crashes compilation. With this flag we now can see the output of the
crashing program. This is useful to make sure it is the same error being
tracked down and not a different error that happens to crash the compiler as
well.
Differential Revision: https://reviews.llvm.org/D22411
llvm-svn: 275646
Summary:
This is necessary to keep the verifier happy after bugpoint removes an
initializer from a global variable with a comdat annotation, because
globals without initializers may not have comdats.
Reviewers: majnemer, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21274
llvm-svn: 272854
looking for it along $PATH. This allows installs of LLVM tools outside of
$PATH to find the symbolizer and produce pretty backtraces if they crash.
llvm-svn: 272232
We forgot to consider the target of ifuncs when considering if a
function was alive or dead.
N.B. Also update a few auxiliary tools like bugpoint and
verify-uselistorder.
This fixes PR27593.
llvm-svn: 268468
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Support seeding a ValueMap with nullptr for Metadata entries, a
situation I didn't consider in the Metadata/Value split.
I added a ValueMapper::getMappedMD accessor that returns an
Optional<Metadata*> with the mapped (possibly null) metadata. IRMover
needs to use this to avoid modifying the map when it's checking for
unneeded subprograms. I updated a call from bugpoint since I find the
new code clearer.
llvm-svn: 265228
A DICompileUnit that is not listed in llvm.dbg.cu will cause assertion
failures and/or crashes in the backend. The Verifier should reject this.
rdar://problem/25369499
llvm-svn: 264657
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
This patch converts code that has access to a LLVMContext to not take a
diagnostic handler.
This has a few advantages
* It is easier to use a consistent diagnostic handler in a single program.
* Less clutter since we are not passing a handler around.
It does make it a bit awkward to implement some C APIs that return a
diagnostic string. I will propose new versions of these APIs and
deprecate the current ones.
llvm-svn: 255571
Before this patch the diagnostic handler was optional. If it was not
passed, the one in the LLVMContext was used.
That is probably not a pattern we want to follow. If each area has an
optional callback, there is a sea of callbacks and it is hard to follow
which one is called.
Doing this also found cases where the callback is a nice addition, like
testing that no errors or warnings are reported.
The other option is to always use the diagnostic handler in the
LLVMContext. That has a few problems
* To implement the C API we would have to set the diag handler and then
set it back to the original value.
* Code that creates the context might be far away from code that wants
the diagnostics.
I do have a patch that implements the second option and will send that as
an RFC.
llvm-svn: 254777
GlobalAliases may reference function definitions, but not function declarations.
bugpoint would sometimes create invalid IR by deleting a function's body (thus
mutating a function definition into a declaration) without first 'fixing' any
GlobalAliases that reference that function definition.
This change iteratively prevents that issue. Before deleting a function's body,
it scans the module for GlobalAliases which reference that function. When
found, it eliminates them using replaceAllUsesWith.
Fixes PR20788.
Patch by Nick Johnson!
llvm-svn: 254171
Summary:
We frequently run bugpoint on a linked module that consists of all
modules we create while jitting the julia standard library. This module
has a very large number of compile units (10000+) in `llvm.dbg.cu`,
which didn't get reduced at all, requiring manual post processing.
This is an attempt to have bugpoint go through and attempt to reduce
the number of global named metadata nodes as well as their operands,
to cut down the number of roots for such metadata.
Reviewers: dexonsmith, reames, pete
Subscribers: pete, dexonsmith, reames, llvm-commits
Differential Revision: http://reviews.llvm.org/D14043
llvm-svn: 252247
We now use clang by default and fallback to gcc when requested.
With this commit, names reflect reality. No functional change
intended.
Discussed with: Rafael Espindola.
llvm-svn: 250321
We now rely on gcc only if either of the following is true:
1) -gcc option is passed by the user
2) clang is not found in the default path.
Differential Revision: http://reviews.llvm.org/D13642
llvm-svn: 250318
folding the code into the main Analysis library.
There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.
Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.
I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.
Differential Revision: http://reviews.llvm.org/D12075
llvm-svn: 245318
Around 10 year ago Chris limited this code to a single iteration by just
dropping a break into the loop body. We now make the number of trim iterations
a compile time constant to be able to play with it and see if this can
improve the bugpoint results. We currently use with '3' still a small and
conservative value, but this can be adjusted in the future, if needed.
I tried to look for a trivial test case, but did not succeed yet.
llvm-svn: 243247
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
I tracked down the bug to an unchecked malloc in SmallVectorBase::grow_pod().
This malloc is returning NULL on my machine when running under bugpoint but not
when -enable-valgrind is given.
llvm-svn: 236504
Summary:
This patch adds two flags to `bugpoint`: "-replace-funcs-with-null" and "-disable-pass-list-reduction".
When "-replace-funcs-with-null" is specified, bugpoint will, instead of simply deleting function bodies, replace all uses of functions and then will delete functions completely from the test module, correctly handling aliasing and @llvm.used && @llvm.compiler.used. This part was conceived while trying to debug the PNaCl IR simplification passes, which don't allow undefined functions (ie no declarations).
With "-disable-pass-list-reduction", bugpoint won't try to reduce the set of passes causing the "crash". This is needed in cases where one is trying to debug an issue inside the PNaCl IR simplification passes which is causing an PNaCl ABI verification error, for example.
Reviewers: jfb
Reviewed By: jfb
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D8555
llvm-svn: 235362
Remove all the global bits to do with preserving use-list order by
moving the `cl::opt`s to the individual tools that want them. There's a
minor functionality change to `libLTO`, in that you can't send in
`-preserve-bc-uselistorder=false`, but making that bit settable (if it's
worth doing) should be through explicit LTO API.
As a drive-by fix, I removed some includes of `UseListOrder.h` that were
made unnecessary by recent commits.
llvm-svn: 234973
Change the callers of `WriteToBitcodeFile()` to pass `true` or
`shouldPreserveBitcodeUseListOrder()` explicitly. I left the callers
that want to send `false` alone.
I'll keep pushing the bit higher until hopefully I can delete the global
`cl::opt` entirely.
llvm-svn: 234957
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
Unify the error messages for the various tools when `verifyModule()`
fails on an input module. The "brave new way" is:
lltool: path/to/input.ll: error: input module is broken!
llvm-svn: 233667
Remove `DebugInfoVerifierLegacyPass` and the `-verify-di` pass.
Instead, call into the `DebugInfoVerifier` from inside
`VerifierLegacyPass::finalizeModule()`. This better matches the logic
in `verifyModule()` (used by the new PassManager), avoids requiring two
separate passes to verify the IR, and makes the API for "add a pass to
verify the IR" simple.
Note: the `-verify-debug-info` flag still works (for now, at least;
eventually it might make sense to just remove it).
llvm-svn: 232772
The MSVC linker won't produce a .lib file for an executable that doesn't
export anything, and LLVM doesn't maintain dllexport annotations or .def
files listing all C++ symbols. It also doesn't support exporting all
symbols, like binutils ld.
CMake 3.2 changed the Ninja generator to list both the .exe and .lib
files as outputs of executable build targets. Ninja would always re-link
executables with ENABLE_EXPORTS because the .lib output file was not
present, and therefore the target was out of date.
llvm-svn: 232662
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
I noticed that it was untested, and forcing it on caused some tests to fail:
LLVM :: Linker/metadata-a.ll
LLVM :: Linker/prefixdata.ll
LLVM :: Linker/type-unique-odr-a.ll
LLVM :: Linker/type-unique-simple-a.ll
LLVM :: Linker/type-unique-simple2-a.ll
LLVM :: Linker/type-unique-simple2.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/unnamed-addr1-a.ll
LLVM :: Linker/visibility1.ll
If it is to be resurrected, it has to be fixed and we should probably have a
-preserve-source command line option in llvm-mc and run tests with and without
it.
llvm-svn: 220741
this, and in some circumstances (e.g. reducing particularly large test-cases)
this was causing bugpoint to be killed for hitting open file-handle limits.
No test case: I was only able to trigger this with test cases taking upwards of
10 mins to run.
llvm-svn: 219244
The memory management in BugPoint is fairly convoluted, so this just unwraps
one layer by changing the return type of functions that always return
owned Modules.
llvm-svn: 216464
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
llvm-svn: 216393
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This is mostly a cleanup, but it changes a fairly old behavior.
Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.
Now to get a usable behavior out of opt one doesn't need the funny
looking command line:
opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts
llvm-svn: 214919
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Patch by Kostya Serebryany.
unique_ptr would be nice, but it's a bit too much work for an area I'm
not familiar with, nor invested in, unfortunately.
llvm-svn: 207265
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822
Implement DebugInfoVerifier, which steals verification relying on
DebugInfoFinder from Verifier.
- Adds LegacyDebugInfoVerifierPassPass, a ModulePass which wraps
DebugInfoVerifier. Uses -verify-di command-line flag.
- Change verifyModule() to invoke DebugInfoVerifier as well as
Verifier.
- Add a call to createDebugInfoVerifierPass() wherever there was a
call to createVerifierPass().
This implementation as a module pass should sidestep efficiency issues,
allowing us to turn debug info verification back on.
<rdar://problem/15500563>
llvm-svn: 206300
sys::fs::createUniqueFile returns an absolute path, so MakeSharedObject does
too and we don't need to add a './' prefix.
Patch by Jon McLachlan.
llvm-svn: 203931
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
llvm-svn: 202824
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
llvm-svn: 202052
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.
Move CodeGenPrepare into libLLVMCodeGen to avoid that.
Follow-up of <rdar://problem/15519855>
llvm-svn: 201912
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
llvm-svn: 198836
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688
This reduces the size of clang-format from 22 MB to 1.8 MB, diagtool goes from
21 MB to 2.8 MB, libclang.so goes from 29 MB to 20 MB, etc. The size of the
bin/ folder shrinks from 270 MB to 200 MB.
Targets that support plugins and don't already use EXPORTED_SYMBOL_FILE
(which libclang and libLTO already do) can set NO_DEAD_STRIP to opt out.
llvm-svn: 198087
Summary:
Currently shared library builds (BUILD_SHARED_LIBS=ON in cmake) fail three
bugpoint tests (BugPoint/remove_arguments_test.ll,
BugPoint/crash-narrowfunctiontest.ll, and BugPoint/metadata.ll).
If I run the bugpoint commands that llvm-lit runs with without -silence-passes
I see errors such as this:
opt: error while loading shared libraries: libLLVMSystemZInfo.so: failed to
map segment from shared object: Cannot allocate memory
It seems that the increased size of the binaries in a shared library build is
causing the subprocess to exceed the 100MB memory limit. This patch therefore
increases the default limit to a level at which these tests pass.
Reviewers: dsanders
Reviewed By: dsanders
CC: llvm-commits, rafael
Differential Revision: http://llvm-reviews.chandlerc.com/D2013
llvm-svn: 193420
Iterator of std::vector may be implemented as a raw pointer. In
this case ADL does not find the find() function in the std namespace.
For example, this is the case with STDCXX implementation of vector.
Patch by Konstantin Tokarev.
llvm-svn: 189733
The ExtractLoops function tries to reduce the failing test case by extracting
one or more loops from the misoptimized piece of the program. In doing this,
ExtractLoops must keep the MiscompiledFunctions vector up-to-date by ensuring
that the pointers refer to functions in the current failing program.
Unfortunately, this is not trivial because:
- ExtractLoops is iterative, and there are several early exits (and the
MiscompiledFunctions vector must be consistent with the current program at
every non-fatal exit point).
- Several of the utility functions used by ExtractLoops (such as
TestOptimizer, some of which are called through the TestFn callback
parameter, and Linker::LinkModules) delete their inputs upon success.
This change adds several updates of the MiscompiledFunctions vector at
different points. The first is after the initial call to TestMergedProgram
which checks that the loop-extracted program still works. The second is after
the call to TestFn (TestOptimizer, for example). This function will delete its
inputs (which is why the existing ExtractLoops logic cloned the inputs first).
llvm-svn: 187674
This function is complementary to createTemporaryFile. It handles the case were
the unique file is *not* temporary: we will rename it in the end. Since we
will rename it, the file has to be in the same filesystem as the final
destination and we don't prepend the system temporary directory.
This has a small semantic difference from unique_file: the default mode is 0666.
This matches the behavior of most unix tools. For example, with this change
lld now produces files with the same permissions as ld. I will add a test
of this change when I port clang over to createUniqueFile (next commit).
llvm-svn: 185726
sys::fs::unique_file will now loop infinitely if provided with a file name
without '%' characters and the input file already exists. As a result, bugpoint
cannot use a fixed file name for the execution output (including the reference
output).
llvm-svn: 185166