The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Summary:
EHPad BB are not entered the classic way and therefor do not need to be placed after their predecessors. This patch make sure EHPad BB are not chosen amongst successors to form chains, and are selected as last resort when selecting the best candidate.
EHPad are scheduled in reverse probability order in order to have them flow into each others naturally.
Reviewers: chandlerc, majnemer, rafael, MatzeB, escha, silvas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17625
llvm-svn: 265726
Summary: There are places in MachineBlockPlacement where a worklist is filled in pretty much identical way. The code is duplicated. This refactor it so that the same code is used in both scenarii.
Reviewers: chandlerc, majnemer, rafael, MatzeB, escha, silvas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18077
llvm-svn: 263495
If we have a loop with a rarely taken path, we will prune that from the blocks which get added as part of the loop chain. The problem is that we weren't then recognizing the loop chain as schedulable when considering the preheader when forming the function chain. We'd then fall to various non-predecessors before finally scheduling the loop chain (as if the CFG was unnatural.) The net result was that there could be lots of garbage between a loop preheader and the loop, even though we could have directly fallen into the loop. It also meant we separated hot code with regions of colder code.
The particular reason for the rejection of the loop chain was that we were scanning predecessor of the header, seeing the backedge, believing that was a globally more important predecessor (true), but forgetting to account for the fact the backedge precessor was already part of the existing loop chain (oops!.
Differential Revision: http://reviews.llvm.org/D17830
llvm-svn: 262547
Summary: This option is being added for testing purposes.
Reviewers: mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16410
llvm-svn: 258409
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
When looking for the best successor from the outer loop for a block
belonging to an inner loop, the edge probability computation can be
improved so that edges in the inner loop are ignored. For example,
suppose we are building chains for the non-loop part of the following
code, and looking for B1's best successor. Assume the true body is very
hot, then B3 should be the best candidate. However, because of the
existence of the back edge from B1 to B0, the probability from B1 to B3
can be very small, preventing B3 to be its successor. In this patch, when
computing the probability of the edge from B1 to B3, the weight on the
back edge B1->B0 is ignored, so that B1->B3 will have 100% probability.
if (...)
do {
B0;
... // some branches
B1;
} while(...);
else
B2;
B3;
Differential revision: http://reviews.llvm.org/D10825
llvm-svn: 253414
In the current BB placement algorithm, a loop chain always contains all loop blocks. This has a drawback that cold blocks in the loop may be inserted on a hot function path, hence increasing branch cost and also reducing icache locality.
Consider a simple example shown below:
A
|
B⇆C
|
D
When B->C is quite cold, the best BB-layout should be A,B,D,C. But the current implementation produces A,C,B,D.
This patch filters those cold blocks off from the loop chain by comparing the ratio:
LoopBBFreq / LoopFreq
to 20%: if it is less than 20%, we don't include this BB to the loop chain. Here LoopFreq is the frequency of the loop when we reduce the loop into a single node. In general we have more cold blocks when the loop has few iterations. And vice versa.
Differential revision: http://reviews.llvm.org/D11662
llvm-svn: 251833
Currently, in MachineBlockPlacement pass the loop is rotated to let the best exit to be the last BB in the loop chain, to maximize the fall-through from the loop to outside. With profile data, we can determine the cost in terms of missed fall through opportunities when rotating a loop chain and select the best rotation. Basically, there are three kinds of cost to consider for each rotation:
1. The possibly missed fall through edge (if it exists) from BB out of the loop to the loop header.
2. The possibly missed fall through edges (if they exist) from the loop exits to BB out of the loop.
3. The missed fall through edge (if it exists) from the last BB to the first BB in the loop chain.
Therefore, the cost for a given rotation is the sum of costs listed above. We select the best rotation with the smallest cost. This is only for PGO mode when we have more precise edge frequencies.
Differential revision: http://reviews.llvm.org/D10717
llvm-svn: 250754
Remove implicit ilist iterator conversions from MachineBasicBlock.cpp.
I've also added an overload of `splice()` that takes a pointer, since
it's a natural API. This is similar to the overloads I added for
`remove()` and `erase()` in r249867.
llvm-svn: 249883
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
1. Create a utility function normalizeEdgeWeights() in MachineBranchProbabilityInfo that normalizes a list of edge weights so that the sum of then can fit in uint32_t.
2. Provide an interface in MachineBasicBlock to normalize its successors' weights.
3. Add a flag in MachineBasicBlock that tracks whether its successors' weights are normalized.
4. Provide an overload of getSumForBlock that accepts a non-const pointer to a MBB so that it can force normalizing this MBB's successors' weights.
5. Update several uses of getSumForBlock() by eliminating the once needed weight scale.
Differential Revision: http://reviews.llvm.org/D11442
llvm-svn: 244154
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
With the option -outline-optional-branches, LLVM will place optional
branches out of line (more details on r231230).
With this patch, this is not done for short optional branches. A short
optional branch is a branch containing a single block with an
instruction count below a certain threshold (defaulting to 3). Still
everything is guarded under -outline-optional-branches).
Outlining a short branch can't significantly improve code locality. It
can however decrease performance because of the additional jmp and in
cases where the optional branch is hot. This fixes a compile time
regression I have observed in a benchmark.
Review: http://reviews.llvm.org/D8108
llvm-svn: 232802
already been added and the inconsistency made choosing names and
changing code more annoying. Plus, wow are they better for this code!
llvm-svn: 231347
result reasonable.
This code predated clang-format and so there was a reasonable amount of
crufty formatting that had accumulated. This should ensure that neither
myself nor others end up with formatting-only changes sneaking into
other fixes.
llvm-svn: 231341
just arbitrarily interleaving unrelated control flows once they get
moved "out-of-line" (both outside of natural CFG ordering and with
diamonds that cannot be fully laid out by chaining fallthrough edges).
This easy solution doesn't work in practice, and it isn't just a small
bug. It looks like a very different strategy will be required. I'm
working on that now, and it'll again go behind some flag so that
everyone can experiment and make sure it is working well for them.
llvm-svn: 231332
a flag for now.
First off, thanks to Daniel Jasper for really pointing out the issue
here. It's been here forever (at least, I think it was there when
I first wrote this code) without getting really noticed or fixed.
The key problem is what happens when two reasonably common patterns
happen at the same time: we outline multiple cold regions of code, and
those regions in turn have diamonds or other CFGs for which we can't
just topologically lay them out. Consider some C code that looks like:
if (a1()) { if (b1()) c1(); else d1(); f1(); }
if (a2()) { if (b2()) c2(); else d2(); f2(); }
done();
Now consider the case where a1() and a2() are unlikely to be true. In
that case, we might lay out the first part of the function like:
a1, a2, done;
And then we will be out of successors in which to build the chain. We go
to find the best block to continue the chain with, which is perfectly
reasonable here, and find "b1" let's say. Laying out successors gets us
to:
a1, a2, done; b1, c1;
At this point, we will refuse to lay out the successor to c1 (f1)
because there are still un-placed predecessors of f1 and we want to try
to preserve the CFG structure. So we go get the next best block, d1.
... wait for it ...
Except that the next best block *isn't* d1. It is b2! d1 is waaay down
inside these conditionals. It is much less important than b2. Except
that this is exactly what we didn't want. If we keep going we get the
entire set of the rest of the CFG *interleaved*!!!
a1, a2, done; b1, c1; b2, c2; d1, f1; d2, f2;
So we clearly need a better strategy here. =] My current favorite
strategy is to actually try to place the block whose predecessor is
closest. This very simply ensures that we unwind these kinds of CFGs the
way that is natural and fitting, and should minimize the number of cache
lines instructions are spread across.
It also happens to be *dead simple*. It's like the datastructure was
specifically set up for this use case or something. We only push blocks
onto the work list when the last predecessor for them is placed into the
chain. So the back of the worklist *is* the nearest next block.
Unfortunately, a change like this is going to cause *soooo* many
benchmarks to swing wildly. So for now I'm adding this under a flag so
that we and others can validate that this is fixing the problems
described, that it seems possible to enable, and hopefully that it fixes
more of our problems long term.
llvm-svn: 231238
In a CFG with the edges A->B->C and A->C, B is an optional branch.
LLVM's default behavior is to lay the blocks out naturally, i.e. A, B,
C, in order to improve code locality and fallthroughs. However, if a
function contains many of those optional branches only a few of which
are taken, this leads to a lot of unnecessary icache misses. Moving B
out of line can work around this.
Review: http://reviews.llvm.org/D7719
llvm-svn: 231230
No functional changes intended.
(I plan on doing some modifications to this function and would like to
have as few unrelated changes as possible in the patch)
llvm-svn: 229649
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
Also, add `Function::getFnStackAlignment()`, and canonicalize:
getAttributes().getStackAlignment(AttributeSet::FunctionIndex)
=> getFnStackAlignment()
llvm-svn: 229208