TensorFlow does not allow integers of random bitwidths. It only accepts 8-,
16-, 32-, and 64-bit integer types. Similarly for floating point types, only
half, single, double, and bfloat16 types.
PiperOrigin-RevId: 237483913
- compute tile sizes based on a simple model that looks at memory footprints
(instead of using the hardcoded default value)
- adjust tile sizes to make them factors of trip counts based on an option
- update loop fusion CL options to allow setting maximal fusion at pass creation
- change an emitError to emitWarning (since it's not a hard error unless the client
treats it that way, in which case, it can emit one)
$ mlir-opt -debug-only=loop-tile -loop-tile test/Transforms/loop-tiling.mlir
test/Transforms/loop-tiling.mlir:81:3: note: using tile sizes [4 4 5 ]
for %i = 0 to 256 {
for %i0 = 0 to 256 step 4 {
for %i1 = 0 to 256 step 4 {
for %i2 = 0 to 250 step 5 {
for %i3 = #map4(%i0) to #map11(%i0) {
for %i4 = #map4(%i1) to #map11(%i1) {
for %i5 = #map4(%i2) to #map12(%i2) {
%0 = load %arg0[%i3, %i5] : memref<8x8xvector<64xf32>>
%1 = load %arg1[%i5, %i4] : memref<8x8xvector<64xf32>>
%2 = load %arg2[%i3, %i4] : memref<8x8xvector<64xf32>>
%3 = mulf %0, %1 : vector<64xf32>
%4 = addf %2, %3 : vector<64xf32>
store %4, %arg2[%i3, %i4] : memref<8x8xvector<64xf32>>
}
}
}
}
}
}
PiperOrigin-RevId: 237461836
Recently, EDSC introduced an eager mode for building IR in different contexts.
Introduce Python bindings support for loop and loop nest contexts of EDSC
builders. The eager mode is built around the notion of ValueHandle, which is
convenience class for delayed initialization and operator overloads. Expose
this class and overloads directly. The model of insertion contexts maps
naturally to Python context manager mechanism, therefore new bindings are
defined bypassing the C APIs. The bindings now provide three new context
manager classes: FunctionContext, LoopContext and LoopNestContext. The last
two can be used with the `with`-construct in Python to create loop (nests) and
obtain handles to the loop induction variables seamlessly:
with LoopContext(lhs, rhs, 1) as i:
lhs + rhs + i
with LoopContext(rhs, rhs + rhs, 2) as j:
x = i + j
Any statement within the Python context will trigger immediate emission of the
corresponding IR constructs into the context owned by the nearest context
manager.
PiperOrigin-RevId: 237447732
The first version of TableGen-defined LLVM IR Dialect did not include the
mandatory or optional attributes of the operations due to the missing support
for some of the relevant attribute types. This support has been recently
introduced, along with named attributes as arguments in the TableGen operation
definitions. With these changes, LLVM IR Dialect operations now have factory
functions accepting (unnamed) attributes and attaching their canonical names.
Use these factories instead of manually constructing named attributes in the
dialect convreter to avoid hardcoded attribute names in unexpected places.
PiperOrigin-RevId: 237237769
These cleanups reflects some recent changes to the LLVM IR Dialect and the
infrastructure that affects it. In particular, add documentation on direct and
indirect function calls as well as remove the `call` and `call0` separation.
Change the prefix of custom types from `!llvm.type` to `!llvm` so that it
matches the IR. Remove the verifier check disallowing conditional branches to
the same block with arguments: identical arguments are now supported, and
different arguments will be caught later.
PiperOrigin-RevId: 237203452
The LLVM IR Dialect strives to be close to the original LLVM IR instructions.
The conversion from the LLVM IR Dialect to LLVM IR proper is mostly mechanical
and can be automated. Implement TableGen support for generating conversions
from a concise pattern form in the TableGen definition of the LLVM IR Dialect
operations. It is used for all operations except calls and branches. These
operations need access to function and block remapping tables and would require
significantly more code to generate the conversions from TableGen definitions
than the current manually written conversions.
This implementation is accompanied by various necessary changes to the TableGen
operation definition infrastructure. In particular, operation definitions now
contain named accessors to results as well as named accessors to the variadic
operand (returning a vector of operands). The base operation support TableGen
file now contains a FunctionAttr definition. The TableGen now allows to query
the names of the operation results.
PiperOrigin-RevId: 237203077
* bool succeeded(Status)
- Return if the status corresponds to a success value.
* bool failed(Status)
- Return if the status corresponds to a failure value.
PiperOrigin-RevId: 237153884
Supports use case where FlatAffineConstraints::composeMap adds dim identifiers with no SSA values (because the identifiers are the result of an AffineValueMap which is not materialized in the IR and thus has no SSA Value results).
PiperOrigin-RevId: 237145506
This CL adds the same helper classes that exist in the AST form of EDSCs to support a basic indexing notation and emit the proper load and store operations and capture MemRefViews as function arguments.
This CL also adds a wrapper class LoopNestBuilder to allow generic rank-agnostic loops over indices.
PiperOrigin-RevId: 237113755
An implicit OpPointer -> OpType* conversion results in AddressSanitizer triggering a stack-use-after-scope error (which may be a false positive).
Avoid using such patterns to make life good again.
PiperOrigin-RevId: 237053863
Currently, Python bindings provide support for declarting and defining MLIR
functions given a list of argument and result types. Extend the support for
both function declaration and function definition to handle optional function
attributes and function argument attributes. Function attributes are exposed
as keyword arguments on function declaration and definition calls. Function
argument attributes are exposed through a special object that combines the
argument type and its list of attributes. Such objects can be passed instead
of bare types into the type declaration and definition calls. They can be
constructed from bare types and reused in different declarations.
Note that, from the beginning, Python bindings did not pass through C bindings
to declare and define functions. This commit keeps the direct interaction
between Python and C++.
PiperOrigin-RevId: 237047561
When building unstructured control-flow there is a need to construct mlir::Block* before being able to fill them. This invites goto-style programming.
This CL introduces an alternative eager API for BR and COND_BR in which blocks are created eagerly and captured on the fly.
This allows reducing the number of calls to `BlockBuilder` from 4 to 2 in the `builder_blocks_eager` test and from 3 to 2 in the `builder_cond_branch_eager` test.
PiperOrigin-RevId: 237046114
This CL adds support for BranchHandle and BranchBuilder that require a slightly different
abstraction since an mlir::Block is not an mlir::Value.
This CL also adds support for the BR and COND_BR instructions and the relevant tests.
PiperOrigin-RevId: 237034312
This CL reworks the design of EDSCs from first principles.
It introduces a ValueHandle which can hold either:
1. an eagerly typed, delayed Value*
2. a precomputed Value*
A ValueHandle can be manipulated with intrinsic operations a nested within a NestedBuilder. These NestedBuilder are a more idiomatic nested builder abstraction that should feel intuitive to program in C++.
Notably, this abstraction does not require an AST to stage the construction of MLIR snippets from C++. Instead, the abstraction makes use of orderings between definition and declaration of ValueHandles and provides a NestedBuilder and a LoopBuilder helper classes to handle those orderings.
All instruction creations are meant to use the templated ValueHandle::create<> which directly calls mlir::Builder.create<>.
For now the EDSC AST and the builders live side-by-side until the C API is ported.
PiperOrigin-RevId: 237030945
The existing implementation of the Op definition generator assumes and relies
on the fact that native Op Attributes appear after its value-based operands in
the Arguments list. Furthermore, the same order is used in the generated
`build` function for the operation. This is not desirable for some operations
with mandatory attributes that would want the attribute to appear upfront for
better consistency with their textual representation, for example `cmpi` would
prefer the `predicate` attribute to be foremost in the argument list.
Introduce support for using attributes and operands in the Arguments DAG in no
particular order. This is achieved by maintaining a list of Arguments that
point to either the value or the attribute and are used to generate the `build`
method.
PiperOrigin-RevId: 237002921
Adds utility to convert slice bounds to a FlatAffineConstraints representation.
Adds utility to FlatAffineConstraints to promote loop IV symbol identifiers to dim identifiers.
PiperOrigin-RevId: 236973261
- change this for consistency - everything else similar takes/returns a
Function pointer - the FuncBuilder ctor,
Block/Value/Instruction::getFunction(), etc.
- saves a whole bunch of &s everywhere
PiperOrigin-RevId: 236928761
- fix for the mod detection
- simplify/avoid the mod at construction (if the dividend is already known to be less
than the divisor), since the information is available at hand there
PiperOrigin-RevId: 236882988
The recently introduced support for generating MLIR Operations with optional
attributes did not handle the formatted string emission properly, in particular
it did not escape `{` and `}` in calls to `formatv` leading to assertions
during TableGen op definition generation. Fix this by splitting out the
unncessary braces from the format string. Additionally, fix the emission of
the builder argument comment to correctly indicate which attributes are indeed
optional and which are not.
PiperOrigin-RevId: 236832230
- fix out of bounds test case
- -memref-bound-check on the test/Transforms/loop-fusion.mlir no longer reports any
errors, before or after -loop-fusion is run
PiperOrigin-RevId: 236757658
- this was detected when memref-bound-check was run on the output of the
loop-fusion pass
- the addition (to represent ceildiv as a floordiv) had to be performed only
for the constant term of the constraint
- update test cases
- memref-bound-check no longer returns an error on the output of this test case
PiperOrigin-RevId: 236731137
This fixes a bug: previously, during conversion function argument
attributes were neither beings passed through nor converted. This fix
extends DialectConversion to allow for simultaneous conversion of the
function type and the argument attributes.
This was important when lowering MLIR to LLVM where attribute
information (e.g. noalias) needs to be preserved in MLIR(LLVMDialect).
Longer run it seems reasonable that we want to convert both the
function attribute and its type and the argument attributes, but that
requires a small refactoring in Function.h to aggregate these three
fields in an inner struct, which will require some discussion.
PiperOrigin-RevId: 236709409
Dialect attributes are defined as:
dialect-namespace `.` attr-name `:` attribute-value
Dialects can override any of the following hooks to verify the validity of a given attribute:
* verifyFunctionAttribute
* verifyFunctionArgAttribute
* verifyInstructionAttribute
PiperOrigin-RevId: 236507970