Commit Graph

15 Commits

Author SHA1 Message Date
Kristof Beyls e66bc1f756 Introduce control flow speculation tracking pass for AArch64
The pass implements tracking of control flow miss-speculation into a "taint"
register. That taint register can then be used to mask off registers with
sensitive data when executing under miss-speculation, a.k.a. "transient
execution".
This pass is aimed at mitigating against SpectreV1-style vulnarabilities.

At the moment, it implements the tracking of miss-speculation of control
flow into a taint register, but doesn't implement a mechanism yet to then
use that taint register to mask off vulnerable data in registers (something
for a follow-on improvement). Possible strategies to mask out vulnerable
data that can be implemented on top of this are:
- speculative load hardening to automatically mask of data loaded
  in registers.
- using intrinsics to mask of data in registers as indicated by the
  programmer (see https://lwn.net/Articles/759423/).

For AArch64, the following implementation choices are made.
Some of these are different than the implementation choices made in
the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
the instruction set characteristics result in different trade-offs.
- The speculation hardening is done after register allocation. With a
  relative abundance of registers, one register is reserved (X16) to be
  the taint register. X16 is expected to not clash with other register
  reservation mechanisms with very high probability because:
  . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
  . The only way to request X16 to be used as a programmer is through
    inline assembly. In the rare case a function explicitly demands to
    use X16/W16, this pass falls back to hardening against speculation
    by inserting a DSB SYS/ISB barrier pair which will prevent control
    flow speculation.
- It is easy to insert mask operations at this late stage as we have
  mask operations available that don't set flags.
- The taint variable contains all-ones when no miss-speculation is detected,
  and contains all-zeros when miss-speculation is detected. Therefore, when
  masking, an AND instruction (which only changes the register to be masked,
  no other side effects) can easily be inserted anywhere that's needed.
- The tracking of miss-speculation is done by using a data-flow conditional
  select instruction (CSEL) to evaluate the flags that were also used to
  make conditional branch direction decisions. Speculation of the CSEL
  instruction can be limited with a CSDB instruction - so the combination of
  CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
  aren't speculated. When conditional branch direction gets miss-speculated,
  the semantics of the inserted CSEL instruction is such that the taint
  register will contain all zero bits.
  One key requirement for this to work is that the conditional branch is
  followed by an execution of the CSEL instruction, where the CSEL
  instruction needs to use the same flags status as the conditional branch.
  This means that the conditional branches must not be implemented as one
  of the AArch64 conditional branches that do not use the flags as input
  (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
  selectors to not produce these instructions when speculation hardening
  is enabled. This pass will assert if it does encounter such an instruction.
- On function call boundaries, the miss-speculation state is transferred from
  the taint register X16 to be encoded in the SP register as value 0.

Future extensions/improvements could be:
- Implement this functionality using full speculation barriers, akin to the
  x86-slh-lfence option. This may be more useful for the intrinsics-based
  approach than for the SLH approach to masking.
  Note that this pass already inserts the full speculation barriers if the
  function for some niche reason makes use of X16/W16.
- no indirect branch misprediction gets protected/instrumented; but this
  could be done for some indirect branches, such as switch jump tables.

Differential Revision: https://reviews.llvm.org/D54896

llvm-svn: 349456
2018-12-18 08:50:02 +00:00
Alexandros Lamprineas 490ae11717 [AArch64] Re-run load/store optimizer after aggressive tail duplication
The Load/Store Optimizer runs before Machine Block Placement. At O3 the
Tail Duplication Threshold is set to 4 instructions and this can create
new opportunities for the Load/Store Optimizer. It seems worthwhile to
run it once again.

llvm-svn: 349338
2018-12-17 10:45:43 +00:00
Martin Elshuber fef3036d37 Subject: [PATCH] [CodeGen] Add pass to combine interleaved loads.
This patch defines an interleaved-load-combine pass. The pass searches
for ShuffleVector instructions that represent interleaved loads. Matches are
converted such that they will be captured by the InterleavedAccessPass.

The pass extends LLVMs capabilities to use target specific instruction
selection of interleaved load patterns (e.g.: ld4 on Aarch64
architectures).

Differential Revision: https://reviews.llvm.org/D52653

llvm-svn: 347208
2018-11-19 14:26:10 +00:00
Tim Northover 1c353419ab AArch64: add a pass to compress jump-table entries when possible.
llvm-svn: 345188
2018-10-24 20:19:09 +00:00
Oliver Stannard 250e5a5b65 [AArch64][v8.5A] Branch Target Identification code-generation pass
The Branch Target Identification extension, introduced to AArch64 in
Armv8.5-A, adds the BTI instruction, which is used to mark valid targets
of indirect branches. When enabled, the processor will trap if an
instruction in a protected page tries to perform an indirect branch to
any instruction other than a BTI. The BTI instruction uses encodings
which were NOPs in earlier versions of the architecture, so BTI-enabled
code will still run on earlier hardware, just without the extra
protection.

There are 3 variants of the BTI instruction, which are valid targets for
different kinds or branches:
- BTI C can be targeted by call instructions, and is inteneded to be
  used at function entry points. These are the BLR instruction, as well
  as BR with x16 or x17. These BR instructions are allowed for use in
  PLT entries, and we can also use them to allow indirect tail-calls.
- BTI J can be targeted by BR only, and is intended to be used by jump
  tables.
- BTI JC acts ab both a BTI C and a BTI J instruction, and can be
  targeted by any BLR or BR instruction.

Note that RET instructions are not restricted by branch target
identification, the reason for this is that return addresses can be
protected more effectively using return address signing. Direct branches
and calls are also unaffected, as it is assumed that an attacker cannot
modify executable pages (if they could, they wouldn't need to do a
ROP/JOP attack).

This patch adds a MachineFunctionPass which:
- Adds a BTI C at the start of every function which could be indirectly
  called (either because it is address-taken, or externally visible so
  could be address-taken in another translation unit).
- Adds a BTI J at the start of every basic block which could be
  indirectly branched to. This could be either done by a jump table, or
  by taking the address of the block (e.g. the using GCC label values
  extension).

We only need to use BTI JC when a function is indirectly-callable, and
takes the address of the entry block. I've not been able to trigger this
from C or IR, but I've included a MIR test just in case.

Using BTI C at function entries relies on the fact that no other code in
BTI-protected pages uses indirect tail-calls, unless they use x16 or x17
to hold the address. I'll add that code-generation restriction as a
separate patch.

Differential revision: https://reviews.llvm.org/D52867

llvm-svn: 343967
2018-10-08 14:04:24 +00:00
Christy Lee e94374809e Re-submitting changes in D51550 because it failed to patch.
Reviewers: javed.absar, trentxintong, courbet

Reviewed By: trentxintong

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52433

llvm-svn: 342919
2018-09-24 20:47:12 +00:00
Jessica Paquette f90edbe3d6 Recommit "Enable MachineOutliner by default under -Oz for AArch64"
Fixed the ASAN failure from before in r338148, so recommiting.

This patch enables the MachineOutliner by default in AArch64 under -Oz.

The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.

We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!

llvm-svn: 338160
2018-07-27 20:18:27 +00:00
Jessica Paquette faea2d3130 Revert "Enable MachineOutliner by default under -Oz for AArch64"
It failed an Asan test on a bot:

http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/21543/steps/check-llvm%20asan/logs/stdio

Fixing that before recommitting.

llvm-svn: 338136
2018-07-27 17:25:38 +00:00
Jessica Paquette d4229b985c Enable MachineOutliner by default under -Oz for AArch64
This patch enables the MachineOutliner by default in AArch64 under -Oz.

The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.

We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!

llvm-svn: 338133
2018-07-27 16:44:42 +00:00
Francis Visoiu Mistrih ca69b3bf6d [ShrinkWrap] Add optimization remarks to the shrink-wrapping pass
Start by emitting remarks for very basic unsupported cases such as
irreducible CFGs and EHFunclets. The end goal is to be able to cover all
the cases where we give up with an explanation.

llvm-svn: 333972
2018-06-05 00:27:24 +00:00
Michael Zolotukhin 8d052a0dd2 Remove MachineLoopInfo dependency from AsmPrinter.
Summary:
Currently MachineLoopInfo is used in only two places:
1) for computing IsBasicBlockInsideInnermostLoop field of MCCodePaddingContext, and it is never used.
2) in emitBasicBlockLoopComments, which is called only if `isVerbose()` is true.
Despite that, we currently have a dependency on MachineLoopInfo, which makes
pass manager to compute it and MachineDominator Tree. This patch removes the
use (1) and makes the use (2) lazy, thus avoiding some redundant
recomputations.

Reviewers: opaparo, gadi.haber, rafael, craig.topper, zvi

Subscribers: rengolin, javed.absar, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D44812

llvm-svn: 329542
2018-04-09 00:54:47 +00:00
Michael Zolotukhin fab7a676c2 State that CFG is preserved in 'Falkor HW Prefetch Fix Late Phase'.
That removes some redundant recomputations from the passes pipeline.

llvm-svn: 328272
2018-03-22 23:44:40 +00:00
Michael Zolotukhin 3520331f93 Reapply "[test] Add tests for llc passes pipelines." with a fix for bots with expensive checks on.
llvm-svn: 328267
2018-03-22 23:02:48 +00:00
Jonas Devlieghere 7e69dd02bb Revert "[test] Add tests for llc passes pipelines."
This reverts r328159 because the two AArch64 tests fail on GreenDragon:
http://green.lab.llvm.org/green/job/clang-stage1-cmake-RA-expensive/11030/

llvm-svn: 328188
2018-03-22 10:34:06 +00:00
Michael Zolotukhin 7e6fa1d6ae [test] Add tests for llc passes pipelines.
This is basically an extension of existing test
test/CodeGen/X86/O0-pipeline.ll introduced in r302608.

llvm-svn: 328159
2018-03-21 22:17:13 +00:00