No Functionality change.
This refactoring avoids having to call getCurLambda right after PushLambdaScope, to obtain the LambdaScopeInfo that was created during the call to PushLambdaScope.
llvm-svn: 194438
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
Flexible array members only work out if they are the last field of a
record, however virtual bases would give us many situations where the
flexible array member would overlap with the virtual base fields.
It is unlikely in the extreme that this behavior was intended by the
user so raise a diagnostic instead of accepting. This is will not
reject conforming code because flexible array members are an extension
in C++ mode.
llvm-svn: 193920
The determination of which diagnostics would be issued for certain
anonymous unions started to get a little ridiculous. Clean this up by
inverting the condition-tree's logic from dialect -> issue to
issue -> diagnostic.
As part of this cleanup, move ext_c99_flexible_array_member from
DiagnosticParseKinds.td to DiagnosticSemaKinds.td because it's driven by
Sema, not Parse.
Also, the liberty was taken to edit ext_c99_flexible_array_member to
match other, similar, diagnostics.
llvm-svn: 193919
Differential Revision: http://llvm-reviews.chandlerc.com/D2082
Adds a lang_c LinkageSpecDecl to lazily generated builtins. This enforces correct
behavior for builtins in a variety of cases without special treatment elsewhere within
the compiler (special treatment is removed by the patch). It also allows for C++
overloads of builtin functions, which Microsoft uses in their headers e.g.
_InterlockedExchangeAdd is an extern C builtin for the long type but an inline wrapper
for int type.
llvm-svn: 193896
A prior commit of this patch was reverted because it was within the blamelist's purview of a failing test. The failure of that test has been addressed here: http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20131021/091546.html. Therefore I am recommitting this patch (all tests pass on windows, except for the usual modules & index suspects that never pass on my box).
Some background: Both Doug and Richard had asked me in Chicago to remove the circular reference in CXXRecordDecl to LambdaExpr by factoring out and storing the needed information from LambdaExpr directly into CXXRecordDecl.
In addition, I have added an IsGenericLambda flag - this makes life a little easier when we implement capturing, and are Sema-analyzing the body of a lambda (and the calloperator hasn't been wired to the closure class yet). Any inner lambdas can have potential captures that could require walking up the scope chain and checking if any generic lambdas are capture-ready. This 'bit' makes some of that checking easier.
No change in functionality.
This patch was approved by Doug with minor modifications (comments were cleaned up, and all data members were converted from bool/enum to unsigned, as requested):
http://llvm-reviews.chandlerc.com/D1856
Thanks!
llvm-svn: 193246
They were causing CodeGenCXX/mangle-exprs.cpp to fail.
Revert "Remove the circular reference to LambdaExpr in CXXRecordDecl."
Revert "Again: Teach TreeTransform and family how to transform generic lambdas nested within templates and themselves."
llvm-svn: 193226
Both Doug and Richard had asked me to remove the circular reference in CXXRecordDecl to LambdaExpr by factoring out and storing the needed information from LambdaExpr directly into CXXRecordDecl.
No change in functionality.
In addition, I have added an IsGenericLambda flag - this makes life a little easier when we implement capturing, and are Sema-analyzing the body of a lambda (and the calloperator hasn't been wired to the closure class yet). Any inner lambdas can have potential captures that could require walking up the scope chain and checking if any generic lambdas are capture-ready. This 'bit' makes some of that checking easier.
This patch was approved by Doug with minor modifications (comments were cleaned up, and all data members were converted from bool/enum to unsigned, as requested):
http://llvm-reviews.chandlerc.com/D1856
Thanks!
llvm-svn: 193223
With this extension, friend function declarations will retain the language
linkage specified for previous declarations instead of emitting an error
diagnostic.
The feature is known to be compatible with GCC and MSVC and permits a
language to be specified indirectly where it cannot otherwise be written
directly in class scope.
Work is ongoing to improve linkage spec diagnostics.
Fixes PR17337.
Reviewed by Richard Smith.
llvm-svn: 193206
This fixes pr17624.
A FIXME from Richard Smith:
It seems to me that the root cause is that a per-Decl 'used' flag doesn't
really make much sense in the way we use it now. I think we should either track
whether that particular declaration is used (with isUsed scanning the entire
redecl chain), or we should only have one flag for the entire redeclaration
chain (perhaps by always looking at the flag on either the most recent decl or
the canonical decl). Modeling it as "is this declaration or any previous
declaration used" is weird, and requires contortions like the loop at the end
of Sema::MarkFunctionReferenced.
llvm-svn: 193202
This fixes pr17639.
Before this patch clang would consider
void foo(void) __attribute((alias("__foo")));
a declaration. It now correctly handles it as a definition.
Initial patch by Alp Toker. I added support for variables.
llvm-svn: 193200
This fixes PR17591.
N.B. This actually goes beyond what the standard mandates by requiring
the restriction to hold for declarations instead of definitions. This
is believed to be a defect in the standard and an LWG issue has been
submitted.
llvm-svn: 193044
* NamedDecl and CXXMethodDecl were missing getMostRecentDecl.
* The const version can just forward to the non const.
* getMostRecentDecl can use cast instead of cast_or_null.
This then removes some casts from the callers.
llvm-svn: 193039
Summary: Some MS headers use these features.
Reviewers: rnk, rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1948
llvm-svn: 192936
MSVC and clang with -fms-extensions allow pure virtual methods to be
defined inline after the "= 0" tokens. Clang warns on these because it
is not standard, but incorrectly warns on out-of-line definitions, which
are standard.
With this change, clang will only warn on inline definitions of pure
virtual methods.
Fixes some self-host warnings on out-of-line definitions of pure virtual
destructors.
llvm-svn: 192244
Summary:
Operator new, new[], delete, and delete[] are all implicitly static when
declared inside a record. CXXMethodDecl already knows this, but we need
to account for that before we pick the calling convention for the
function type.
Fixes PR17371.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1761
llvm-svn: 192150
In r186373, we started merging attributes on typedefs, but this causes
us to try to merge attributes even if the previous declaration was not
a typedef.
Only merge the attributes if the previous decl was also a typedef.
Fixes rdar://problem/15044218
llvm-svn: 192146
As Richard pointed out to me, dyn_cast is very cheap - there is no real benefit from adding cluttery overloads to only avoid that cast.
No functionality change.
llvm-svn: 191646
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- generic lambdas within template functions and nested
within other generic lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
(Although I have gotten some useful feedback on my patches of the above and will be incorporating that as I submit those patches for commit)
As an example of what compiles through this commit:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
This patch has been reviewed by Doug and Richard. Minor changes (non-functionality affecting) have been made since both of them formally looked at it, but the changes involve removal of supernumerary return type deduction changes (since they are now redundant, with richard having committed a recent patch to address return type deduction for C++11 lambdas using C++14 semantics).
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that SemaType.cpp::ConvertDeclSpecToType may use it to immediately
generate a template-parameter-type when 'auto' is parsed in a generic
lambda parameter context. (i.e we do NOT use AutoType deduced to
a template parameter type - Richard seemed ok with this approach).
We encode that this template type was generated from an auto by simply
adding $auto to the name which can be used for better diagnostics if needed.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- various tests were added - but much more will be needed.
There is obviously more work to be done, and both Richard (weakly) and Doug (strongly)
have requested that LambdaExpr be removed form the CXXRecordDecl LambdaDefinitionaData
in a future patch which is forthcoming.
A greatful thanks to all reviewers including Eli Friedman, James Dennett,
and especially the two gracious wizards (Richard Smith and Doug Gregor)
who spent hours providing feedback (in person in Chicago and on the mailing lists).
And yet I am certain that I have allowed unidentified bugs to creep in; bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 191453
Summary:
Parsing cast expressions during error recovery can put us in a bad
state. Check to see if the token for a simple-type-specifier makes
sense before further parsing.
Fixes PR17255.
Reviewers: rsmith, doug.gregor, CornedBee, eli.friedman
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1696
llvm-svn: 191159
variable from being the function to being the enclosing namespace scope (in
C++) or the TU (in C). This allows us to fix a selection of related issues
where we would build incorrect redeclaration chains for such declarations, and
fail to notice type mismatches.
Such declarations are put into a new IdentifierNamespace, IDNS_LocalExtern,
which is only found when searching scopes, and not found when searching
DeclContexts. Such a declaration is only made visible in its DeclContext if
there are no non-LocalExtern declarations.
llvm-svn: 191064
Summary:
When selecting a mangling for an anonymous tag type:
- We should first try it's typedef'd name.
- If that doesn't work, we should mangle in the name of the declarator
that specified it as a declaration specifier.
- If that doesn't work, fall back to a static mangling of
<unnamed-type>.
This should make our anonymous type mangling compatible.
This partially fixes PR16994; we would need to have an implementation of
scope numbering to get it right (a separate issue).
Reviewers: rnk, rsmith, rjmccall, cdavis5x
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1540
llvm-svn: 190892
Summary:
This fixes several issues with the original implementation:
- Win32 entry points cannot be in namespaces
- A Win32 entry point cannot be a function template, diagnose if we it.
- Win32 entry points cannot be overloaded.
- Win32 entry points implicitly return, similar to main.
Reviewers: rnk, rsmith, whunt, timurrrr
Reviewed By: rnk
CC: cfe-commits, nrieck
Differential Revision: http://llvm-reviews.chandlerc.com/D1683
llvm-svn: 190818
Make sure we perform the correct "referenced-but-not-used" check for
static member constants.
Fixes bug reported on cfe-commits by Alexey Samsonov.
llvm-svn: 190437
Static locals requiring initialization are not thread safe on Windows.
Unfortunately, it's possible to create static locals that are actually
externally visible with inline functions and templates. As a result, we
have to implement an initialization guard scheme that is compatible with
TUs built by MSVC, which makes thread safety prohibitively difficult.
MSVC's scheme is that every function that requires a guard gets an i32
bitfield. Each static local is assigned a bit that indicates if it has
been initialized, up to 32 bits, at which point a new bitfield is
created. MSVC rejects inline functions with more than 32 static locals,
and the externally visible mangling (?_B) only allows for one guard
variable per function.
On Eli's recommendation, I used MangleNumberingContext to track which
bit each static corresponds to.
Implements PR16888.
Reviewers: rjmccall, eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1416
llvm-svn: 190427
This patch does a few different things.
This patch improves unused var diags for const vars: we no longer
unconditionally suppress diagnostics for const vars, instead only suppressing
the diagnostic when the declaration appears to be useful.
This patch also makes us more consistently use whether a variable/function
is declared in the main file to suppress diagnostics where appropriate.
Fixes <rdar://problem/14907887>.
llvm-svn: 190382
Exception specs are not part of the canonical type, but we shouldn't
drop them just because we merged a noreturn attribute.
Fixes PR17110.
llvm-svn: 190206
When an AST file is built based on another AST file, it can use a decl from
the fist file, and therefore mark the "isUsed" bit. We need to note this in
the AST file so that the bit is set correctly when the second AST file is
loaded.
This patch introduces the distinction between setIsUsed() and markUsed() so
that we don't call into the ASTMutationListener callback when it wouldn't
be appropriate.
Fixes PR16635.
llvm-svn: 190016
Summary:
Makes functions with implicit calling convention compatible with
function types with a matching explicit calling convention. This fixes
things like calls to qsort(), which has an explicit __cdecl attribute on
the comparator in Windows headers.
Clang will now infer the calling convention from the declarator. There
are two cases when the CC must be adjusted during redeclaration:
1. When defining a non-inline static method.
2. When redeclaring a function with an implicit or mismatched
convention.
Fixes PR13457, and allows clang to compile CommandLine.cpp for the
Microsoft C++ ABI.
Excellent test cases provided by Alexander Zinenko!
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1231
llvm-svn: 189412
- Some documenation were added.
- Usages of OpaquePtr<A>.getAsVal<A>() were replaced by OpaquePtr<A>.get().
- Methods getAs and getAsVal were renamed to getPtrTo and getPtrAs respectively.
llvm-svn: 189346
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
referenced as a member of the current instantiation. In that case, deduce the
type of the function to a dependent type rather than exposing an undeduced auto
type to the rest of the current instantiation.
The standard doesn't really say that the type is dependent in this case; I'll
bring this up with CWG.
llvm-svn: 188410
When a local extern declaration redeclares some other entity, the type of that
entity is merged with the prior type if the prior declaration is visible (in C)
or is declared in the same scope (in C++).
- Make LookupRedeclarationWithLinkage actually work in C++, use it in the right
set of cases, and make it track whether it found a shadowed declaration.
- Track whether we found a declaration in the same scope (for C++) including
across serialization and template instantiation.
llvm-svn: 188307
I'm not really satisfied with the ad-hoc nature of
Sema::diagnoseQualifiedDeclaration, but I'm not sure how to fix it.
Fixes <rdar://problem/14639501>.
llvm-svn: 188208
of local classes. We were previously handling this by performing qualified
lookup within a function declaration(!!); replace it with the proper scope
lookup.
llvm-svn: 188050
bool, half, pointers and structs / unions containing any
of these are not allowed. Does not yet reject size_t and
related integer types that are also disallowed.
llvm-svn: 186908
The functionality is equivalent to the GCC attribute. Variables of tagged
types will be warned about as unused if they are not used in any way
except for possible (even non-trivial) ctors/dtors called. Useful for tagging
classes like std::string (which is not part of this commit).
llvm-svn: 186765
r186331).
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186546
cl.exe treats wide bitfields as an error. This patch causes them to be
an error if IsMsStruct is true, as it is in straight C.
Patch by Warren Hunt!
Reviewers: eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1125
llvm-svn: 186536
Sema needs to be able to accurately determine what will be
emitted as a constant initializer and what will not, so
we get accurate errors in C and accurate -Wglobal-constructors
warnings in C++. This makes Expr::isConstantInitializer match
CGExprConstant as closely as possible.
llvm-svn: 186464
Not completely sure this is right, but it's clearly better than what
we did before this commit (effectively dropping the attribute).
<rdar://problem/14413117>
llvm-svn: 186373
This breaks the build of basic patterns with repeated friend
declarations. See the added test case in SemaCXX/friend.cpp or the test
case reported to the original commit log.
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186331
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186199
fix is.
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186185
lookup in the surrounding context. Slightly rework how we handle friend
declarations to inherit the visibility of the prior declaration, rather
than setting a friend declaration to be visible whenever there was a prior
declaration.
llvm-svn: 186040
Compute mangling numbers for externally visible local variables and tags.
Change the mangler to consistently use discriminators where necessary.
Tweak the scheme we use to number decls which are not externally visible
to avoid unnecessary discriminators in common cases now that we request
them more consistently.
Fixes <rdar://problem/14204721>.
llvm-svn: 185986
Sema::MergeFunctionDecl attempts merging two decls even if the old decl
is invalid. This can lead to interesting circumstances where we
successfully merge the decls but the result makes no sense.
Take the following for example:
template <typename T>
int main(void);
int main(void);
Sema will not consider these to be overloads of the same name because
main can't be overloaded, which means that this must be a redeclaration.
In this case the templated decl is compatible with the non-templated
decl allowing the Sema::CheckFunctionDeclaration machinery to move on
and do bizarre things like setting the previous decl of a non-templated
decl to a templated decl!
The way I see it, we should just bail from MergeFunctionDecl if the old
decl is invalid.
This fixes PR16531.
llvm-svn: 185779
This boils down to us sending invalid function decls to
CheckFunctionDeclaration becauswe we did not consider that CheckMain
could cause the decl to be invalid. Instead, interogate the new decl's
main-validity and *then* send it over to get CheckFunctionDeclaration'd
if it was still valid after calling CheckMain.
llvm-svn: 185745
The removal is tried by retrying the failed lookup of a correction
candidate with either the MemberContext or SS (CXXScopeSpecifier) or
both set to NULL if they weren't already. If the candidate identifier
is then looked up successfully, make a note in the candidate that the
SourceRange should include any existing nested name specifier even if
the candidate isn't adding a different one (i.e. the candidate has a
NULL NestedNameSpecifier).
Also tweak the diagnostic messages to differentiate between a suggestion
that just replaces the identifer but leaves the existing nested name
specifier intact and one that replaces the entire qualified identifier,
in cases where the suggested replacement is unqualified.
llvm-svn: 185487
standard's rule that an extern "C" declaration conflicts with any entity in the
global scope with the same name. Now we only care if the global scope entity is
a variable declaration (and so might have the same mangled name as the extern
"C" declaration). This has been reported as a standard defect.
Original commit message:
PR7927, PR16247: Reimplement handling of matching extern "C" declarations
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185281
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185229
r177473 made us correctly consider only those declarations in the
enclosing namespace scope when looking for a friend declaration. Under
ms-extensions mode, where we do some level of friend injection, this
meant that we were introducing a new tag type into a different scope
than what Microsoft actually does. Address this by only doing the
friend injection when we didn't see any tag with that name in any
outer scope. Fixes <rdar://problem/14250378>.
llvm-svn: 185100
Make use of getTypeSizeInChars to detect structs/unions of zero size. It allows
more accurate detection of types of zero size. It however has a side effect -
sequence of used types may change, that is why the test 'override-layout' was
modified.
llvm-svn: 184088
This helps preserve the type-as-written in the AST, which we need for
MSVC mangling. In particular, we need to preserve the types of array
parameters in function pointer types.
The essence of this change is:
- QualType ArgTy = Param->getType();
+ QualType ArgTy = Param->getTypeSourceInfo()->getType();
... followed by the adjustment in ActOnFunctionDeclarator().
Differential Revision: http://llvm-reviews.chandlerc.com/D883
llvm-svn: 183614
references. What's more, they use this language extension in their
ATL header files (which come as part of MFC and the Win32 SDK). This patch implements support for the Microsoft extension, and addresses PR13737.
llvm-svn: 182936
While the C++ standard requires that this lookup take place only at the
definition point of a virtual destructor (C++11 [class.dtor]p12), the
Microsoft ABI may require the compiler to emit a deleting destructor
for any virtual destructor declared in the TU, including ones without
a body, requiring an operator delete() lookup for every virtual
destructor declaration. The result of the lookup should be the same
no matter which declaration is used (except in weird corner cases).
This change will cause us to reject some valid TUs in Microsoft ABI
mode, e.g.:
struct A {
void operator delete(void *);
};
struct B {
void operator delete(void *);
};
struct C : A, B {
virtual ~C();
};
As Richard points out, every virtual function declared in a TU
(including this virtual destructor) is odr-used, so it must be defined
in any program which declares it, or the program is ill formed, no
diagnostic required. Because we know that any definition of this
destructor will cause the lookup to fail, the compiler can choose to
issue a diagnostic here.
Differential Revision: http://llvm-reviews.chandlerc.com/D822
llvm-svn: 182270
selectany only applies to externally visible global variables. It has
the effect of making the data weak_odr.
The MSDN docs suggest that unused definitions can only be dropped at
linktime, so Clang uses weak instead of linkonce. MSVC optimizes away
references to constant selectany data, so it must assume that there is
only one definition, hence weak_odr.
Reviewers: espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D814
llvm-svn: 182266
This patch renames getLinkage to getLinkageInternal. Only code that
needs to handle UniqueExternalLinkage specially should call this.
Linkage, as defined in the c++ standard, is provided by
getFormalLinkage. It maps UniqueExternalLinkage to ExternalLinkage.
Most places in the compiler actually want isExternallyVisible, which
handles UniqueExternalLinkage as internal.
llvm-svn: 181677
I was not able to find a case (other than the fix in r181163) where this
makes a difference, but it is a more obviously correct API to have.
llvm-svn: 181165
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180973
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180970
are now two distinct canonical 'AutoType's: one is the undeduced 'auto'
placeholder type, and the other is a deduced-but-dependent type. All
deduced-to-a-non-dependent-type cases are still non-canonical.
llvm-svn: 180789
Instead, we check for one line extern "C" context in linkage computation and
when deciding if a variable is a definition.
This hopefully completes the transition to having "as written" semantics for
hasExternalStorage.
llvm-svn: 180258
statement in constexpr functions. Everything which doesn't require variable
mutation is also allowed as an extension in C++11. 'void' becomes a literal
type to support constexpr functions which return 'void'.
llvm-svn: 180022
C++1y, so stop adding the 'const' there. Provide a compatibility warning for
code relying on this in C++11, with a fix-it hint. Update our lazily-written
tests to add the const, except for those ones which were testing our
implementation of this rule.
llvm-svn: 179969
It was being used correctly, but it is a very dangerous API to have around.
Instead, move the logic from the filtering to when we are deciding if we should
link two decls.
llvm-svn: 179523
Invalid redeclarations of valid explicit declarations shouldn't
take the same path as redeclarations of implicit declarations,
and invalid local extern declarations shouldn't foul things up
for everybody else.
llvm-svn: 179482
New rule:
- Method decls in @implementation are considered "redeclarations"
and inherit deprecated/availability from the @interface.
- All other cases are consider overrides, which do not inherit
deprecated/availability. For example:
(a) @interface redeclares a method in an adopted protocol.
(b) A subclass redeclares a method in a superclass.
(c) A protocol redeclares a method from another protocol it adopts.
The idea is that API authors should have the ability to easily
move availability/deprecated up and down a class/protocol hierarchy.
A redeclaration means that the availability/deprecation is a blank
slate.
Fixes <rdar://problem/13574571>
llvm-svn: 178937
This removes a bit of patching that survived r178663. Without it we can produce
better a better error message for
const int a = 5;
static const int a;
llvm-svn: 178795
Having these not be the same makes an easy to misuse API. We should audit the
uses and probably rename to something like
foo->hasExternalLinkage():
The c++ standard one. That is UniqueExternalLinkage or ExternalLinkage.
foo->hasUniqueExternalLinkage():
Is UniqueExternalLinkage.
foo->hasCogeGenExternalLinkage():
Is ExternalLinkage.
llvm-svn: 178768
This mostly reverts 178733, but keeps the tests.
I don't claim to understand how hidden sub modules work or when we need to see
them (is that documented?), but this has the same semantics and avoids adding
hasExternalLinkageUncached which has the same foot gun potential as the old
hasExternalLinkage.
Last but not least, not computing linkage when it is not needed is more
efficient.
llvm-svn: 178739
This test was exactly the opposite of what it should be. We should check if
there old decl has linkage (where it makes sense) and if the new decl has
the extern keyword.
llvm-svn: 178735
caching the linkage for a declaration before we set up its redeclaration chain,
when determining whether a declaration could be a redeclaration of something
from an unimported submodule. We actually want to look at the declaration as if
it were not a redeclaration here, so compute the linkage but don't cache it.
llvm-svn: 178733
http://lab.llvm.org:8011/builders/clang-x86_64-darwin10-gdb went back green
before it processed the reverted 178663, so it could not have been the culprit.
Revert "Revert 178663."
This reverts commit 4f8a3eb2ce5d4ba422483439e20c8cbb4d953a41.
llvm-svn: 178682
For variables and functions clang used to store two storage classes. The one
"as written" in the code and a patched one, which, for example, propagates
static to the following decls.
This apparently is from the days clang lacked linkage computation. It is now
redundant and this patch removes it.
llvm-svn: 178663
Doxygen treats "@command" the same as "\command" in a doc comment, so
whenever we talk about Objective-C things like "@interface" we have to
make sure to escape them.
Let's try to keep Clang -Wdocumentation-clean!
llvm-svn: 178603
variable in a C99 inline (but not static-inline or extern-inline)
function definition.
The standard doesn't actually say that this doesn't apply to
"extern inline" definitions, but that seems like a useful extension,
and it at least doesn't have the obvious flaw that a static
mutable variable in an externally-available definition does.
rdar://13535367
llvm-svn: 178520
visible. There's a lot of potential badness in how we're modelling
these things, but getting this much correct is reasonably easy.
rdar://13535367
llvm-svn: 178488
We already avoided warning for
extern "C" const char *Version_string = "2.9";
now we also don't produce any warnings for
extern "C" {
extern const char *Version_string2 = "2.9";
}
llvm-svn: 178333
picking up cleanups from earlier in the statement. Also fix a
crash-on-invalid where a reference to an invalid decl from an
enclosing scope was causing an expression to fail to build, but
only *after* a cleanup was registered from that statement,
causing an assertion downstream.
The crash-on-valid is rdar://13459289.
llvm-svn: 177692
Before this patch we would compute the linkage lazily and cache it. When the
AST was modified in ways that could change the value, we would invalidate the
cache.
That was fairly brittle, since any code could ask for the a linkage before
the correct value was available.
We should change the API to one where the linkage is computed explicitly and
trying to get it when it is not available asserts.
This patch is a first step in that direction. We still compute the linkage
lazily, but instead of invalidating a cache, we assert that the AST
modifications didn't change the result.
llvm-svn: 176999
extern "C" {
void test5_f() {
extern int test5_b;
}
}
static float test5_b;
This patch makes us report one for
extern "C" {
void test6_f() {
extern int test6_b;
}
}
extern "C" {
static float test6_b;
}
Not because we think the declaration would be extern C, but because of the rule:
An entity with C language linkage shall not be declared with the same name as an entity in global scope...
We were just not looking past the extern "C" to see if the decl was in global
scope.
llvm-svn: 176875
Without this patch we produce an error for
extern "C" {
void f() {
extern int b;
}
}
extern "C" {
extern float b;
}
but not for
extern "C" {
void f() {
extern int b;
}
}
extern "C" {
float b;
}
llvm-svn: 176867
the normal attribute-merging path, because we can't merge alignment attributes
without knowing the complete set of alignment attributes which apply to a
particular declaration.
llvm-svn: 175861
control the visibility of a type for the purposes of RTTI
and template argument restrictions independently of how
visibility propagates to its non-type member declarations.
Also fix r175326 to not ignore template argument visibility
on a template explicit instantiation when a member has
an explicit attribute but the instantiation does not.
The type_visibility work is rdar://11880378
llvm-svn: 175587
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462