- Arguments of the first block of a region are considered region arguments.
- Add API on Region class to deal with these arguments directly instead of
using the front() block.
- Changed several instances of existing code that can use this API
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46535
Differential Revision: https://reviews.llvm.org/D83599
The UnrollVectorPattern is can be used in a programmable fashion by:
```
OwningRewritePatternList patterns;
patterns.insert<UnrollVectorPattern<AddFOp>>(ArrayRef<int64_t>{2, 2}, ctx);
patterns.insert<UnrollVectorPattern<vector::ContractionOp>>(
ArrayRef<int64_t>{2, 2, 2}, ctx);
...
applyPatternsAndFoldGreedily(getFunction(), patterns);
```
Differential revision: https://reviews.llvm.org/D83064
The error message in the `std.constant` verifier for function-typed constants
had the name of the undefined function hardcoded to `bar`. Report the actual
name instead.
Differential Revision: https://reviews.llvm.org/D82666
Callback-based constructions of blocks where the body is populated in the same
function as the block creation is a natural extension of callback-based loop
construction. They provide more concise and simple APIs than EDSC BlockBuilder
at less than 20% infrastructural code cost, and are compatible with
ScopedContext. BlockBuilder, Blockhandle and related functionality has been
deprecated, remove them.
Differential Revision: https://reviews.llvm.org/D82015
Summary:
Fixed build of D81618
Add a pattern for expanding tanh op into exp form.
A `tanh` is expanded into:
1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
2) exp^{2x}-1 / exp^{2x}+1 , if x < 0.
Differential Revision: https://reviews.llvm.org/D82040
The ScopedBuilder class in EDSC is being gradually phased out in favor of core
OpBuilder-based helpers with callbacks. Provide helper functions that are
compatible with `edsc::ScopedContext` and can be used to create and populate
blocks using callbacks that take block arguments as callback arguments. This
removes the need for `edsc::BlockHandle`, forward-declaration of `Value`s used
for block arguments and the tag `edsc::Append` class, leading to noticable
reduction in the verbosity of the code using helper functions.
Remove "eager mode" construction tests that are only relevant to the
`BlockBuilder`-based approach.
`edsc::BlockHandle` and `edsc::BlockBuilder` are now deprecated and will be
removed soon.
Differential Revision: https://reviews.llvm.org/D82008
Implement the missing lowering from `std.dim` to the LLVM dialect in case of a
dynamic dimension.
Differential Revision: https://reviews.llvm.org/D81834
This reverts commit 32c757e4f8.
Broke the build bot:
******************** TEST 'MLIR :: Examples/standalone/test.toy' FAILED ********************
[...]
/tmp/ci-KIMiRFcVZt/lib/libMLIRLinalgToLLVM.a(LinalgToLLVM.cpp.o): In function `(anonymous namespace)::ConvertLinalgToLLVMPass::runOnOperation()':
LinalgToLLVM.cpp:(.text._ZN12_GLOBAL__N_123ConvertLinalgToLLVMPass14runOnOperationEv+0x100): undefined reference to `mlir::populateExpandTanhPattern(mlir::OwningRewritePatternList&, mlir::MLIRContext*)'
Summary:
Add a pattern for expanding tanh op into exp form.
A `tanh` is expanded into:
1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
2) exp^{2x}-1 / exp^{2x}+1 , if x < 0.
Differential Revision: https://reviews.llvm.org/D81618
Summary:
- Print function name when ReturnOp verification fails
- This helps easily finding the invalid ReturnOp in an IR dump.
Differential Revision: https://reviews.llvm.org/D81513
Summary:
We now support index casting for tensor<index> to tensor<int>. This
better supports compatibility with the Shape dialect.
Differential Revision: https://reviews.llvm.org/D81611
Allow for dynamic indices in the `dim` operation.
Rather than an attribute, the index is now an operand of type `index`.
This allows to apply the operation to dynamically ranked tensors.
The correct lowering of dynamic indices remains to be implemented.
Differential Revision: https://reviews.llvm.org/D81551
This is useful for manipulating the standard dialect from transformations
outside of the standard dialect.
Differential Revision: https://reviews.llvm.org/D80609
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
The subview semantics changes recently to allow for more natural
representation of constant offsets and strides. The legalization of
subview op for lowering to SPIR-V needs to account for this.
Also change the linearization to use the strides from the affine map
of a memref.
Differential Revision: https://reviews.llvm.org/D80270
Generally:
1) don't use target_link_libraries() and add_mlir_library() on the same target, use LINK_LIBS PUBLIC instead.
2) don't use LINK_LIBS to specify LLVM libraries. Use LINK_COMPONENTS instead
3) no need to link against LLVMSupport. We pull it in by default.
Differential Revision: https://reviews.llvm.org/D80076
DimOp folding is using bare accesses to underlying SubViewOp operands.
This is generally incorrect and is fixed in this revision.
Differential Revision: https://reviews.llvm.org/D80017
The existing implementation of SubViewOp::getRanges relies on all
offsets/sizes/strides to be dynamic values and does not work in
combination with canonicalization. This revision adds a
SubViewOp::getOrCreateRanges to create the missing constants in the
canonicalized case.
This allows reactivating the fused pass with staged pattern
applications.
However another issue surfaces that the SubViewOp verifier is now too
strict to allow folding. The existing folding pattern is turned into a
canonicalization pattern which rewrites memref_cast + subview into
subview + memref_cast.
The transform-patterns-matmul-to-vector can then be reactivated.
Differential Revision: https://reviews.llvm.org/D79759
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
Lowering to LLVM is updated, simplified and now supports all cases.
A mixed static-dynamic mode test that wouldn't previously lower is added.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Differential Revision: https://reviews.llvm.org/D79662
Conversion/ folders were originally intended to store patterns for
DialectA->DialectB conversions that depend on both dialects and do not
conceptually belong to either of the dialects. As such, DialectA->DialectA
conversion does not make sense under Conversion/ and should rather live with
the dialect it operates on.
Differential Revision: https://reviews.llvm.org/D79569
This reverts commit 80d133b24f.
Per Stephan Herhut: The canonicalizer pattern that was added creates
forms of the subview op that cannot be lowered.
This is shown by failing Tensorflow XLA tests such as:
tensorflow/compiler/xla/service/mlir_gpu/tests:abs.hlo.test
Will provide more details offline, they rely on logs from private CI.
Summary:
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Reviewers: ftynse, mravishankar, antiagainst, rriddle!, andydavis1, timshen, asaadaldien, stellaraccident
Reviewed By: mravishankar
Subscribers: aartbik, bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79662
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
This [discussion](https://llvm.discourse.group/t/viewop-isnt-expressive-enough/991/2) raised some concerns with ViewOp.
In particular, the handling of offsets is incorrect and does not match the op description.
Note that with an elemental type change, offsets cannot be part of the type in general because sizeof(srcType) != sizeof(dstType).
Howerver, offset is a poorly chosen term for this purpose and is renamed to byte_shift.
Additionally, for all intended purposes, trying to support non-identity layouts for this op does not bring expressive power but rather increases code complexity.
This revision simplifies the existing semantics and implementation.
This simplification effort is voluntarily restrictive and acts as a stepping stone towards supporting richer semantics: treat the non-common cases as YAGNI for now and reevaluate based on concrete use cases once a round of simplification occurred.
Differential revision: https://reviews.llvm.org/D79541
Summary:
Cast from a value interpreted as floating-point to the corresponding signed
integer value. Similar to an element-wise `static_cast` in C++, performs an
element-wise conversion operation.
Differential Revision: https://reviews.llvm.org/D79373
Summary:
This revision adds a conservative canonicalization pattern for MemRefCastOp that are typically inserted during ViewOp and SubViewOp canonicalization.
Ideally such canonicalizations would propagate the type to consumers but this is not a local behavior. As a consequence MemRefCastOp are introduced to keep type compatibility but need to be cleaned up later, in the case where more dynamic behavior than necessary is introduced.
Differential Revision: https://reviews.llvm.org/D79438
DMA operation classes in the Standard dialect (`DmaStartOp` and `DmaWaitOp`)
provide helper functions that make numerous assumptions about the number and
order of operands, and about their types. However, these assumptions were not
checked in the verifier, leading to assertion failures or crashes when helper
functions were used on ill-formed ops. Some of the assuptions were checked in
the custom parser (and thus could not check assumption violations in ops
constructed programmatically, e.g., during rewrites) and others were not
checked at all. Introduce the verifiers for all these assumptions and drop
unnecessary checks in the parser that are now covered by the verifier.
Addresses PR45560.
Differential Revision: https://reviews.llvm.org/D79408
Adding this pattern reduces code duplication. There is no need to have a
custom implementation for lowering to llvm.cmpxchg.
Differential Revision: https://reviews.llvm.org/D78753
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
This revision allows masked vector transfers with m-D buffers and n-D vectors to
progressively lower to m-D buffer and 1-D vector transfers.
For a vector.transfer_read, assuming a `memref<(leading_dims) x (major_dims) x (minor_dims) x type>` and a `vector<(minor_dims) x type>` are involved in the transfer, this generates pseudo-IR resembling:
```
if (any_of(%ivs_major + %offsets, <, major_dims)) {
%v = vector_transfer_read(
{%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
%ivs_minor):
memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
vector<(minor_dims) x type>;
} else {
%v = splat(vector<(minor_dims) x type>, %fill)
}
```
Differential Revision: https://reviews.llvm.org/D79062
This range allows for performing many different operations on successor operands, including erasing/adding/setting. This removes the need for the explicit canEraseSuccessorOperand and eraseSuccessorOperand methods.
Differential Revision: https://reviews.llvm.org/D79077
OperationHandle mostly existed to mirror the behavior of ValueHandle.
This has become unnecessary and can be retired.
Differential Revision: https://reviews.llvm.org/D78692
As we start defining more complex Ops, we increasingly see the need for
Ops-with-regions to be able to construct Ops within their regions in
their ::build methods. However, these methods only have access to
Builder, and not OpBuilder. Creating a local instance of OpBuilder
inside ::build and using it fails to trigger the operation creation
hooks in derived builders (e.g., ConversionPatternRewriter). In this
case, we risk breaking the logic of the derived builder. At the same
time, OpBuilder::create, which is by far the largest user of ::build
already passes "this" as the first argument, so an OpBuilder instance is
already available.
Update all ::build methods in all Ops in MLIR and Flang to take
"OpBuilder &" instead of "Builder *". Note the change from pointer and
to reference to comply with the common style in MLIR, this also ensures
all other users must change their ::build methods.
Differential Revision: https://reviews.llvm.org/D78713