Unlike other v6+ processors, cortex-m0 never supports unaligned accesses.
From the v6m ARM ARM:
"A3.2 Alignment support: ARMv6-M always generates a fault when an unaligned
access occurs."
rdar://16491560
llvm-svn: 205452
Adds the instructions ext/ext32/cins/cins32.
It also changes pop/dpop to accept the two operand version and
adds a simple pattern to generate baddu.
Tests for the two operand versions (including baddu/dmul/dpop/pop)
and the code generation pattern for baddu are included.
Reviewed by: Daniel.Sanders@imgtec.com
llvm-svn: 205449
Weak symbols cannot use the small code model's usual ADRP sequences since the
instruction simply may not be able to encode a value of 0.
This redirects them to use the GOT, which hopefully linkers are able to cope
with even in the static relocation model.
llvm-svn: 205426
Some Intrinsics are overloaded to the extent that return type equality (all
that's been checked up to now) does not guarantee that the arguments are the
same. In these cases SLP vectorizer should not recurse into the operands, which
can be achieved by comparing them as "Function *" rather than simply the ID.
llvm-svn: 205424
Again, coalescing and other optimisations swiftly made the MachineInstrs
consistent again, but when compiled at -O0 a bad INSERT_SUBREGISTER was
produced.
llvm-svn: 205423
The previous attempt was fine with optimisations, but was actually rather
cavalier with its types. When compiled at -O0, it produced invalid COPY
MachineInstrs.
llvm-svn: 205422
ARM specific optimiztion, finding places in ARM machine code where 2 dmbs
follow one another, and eliminating one of them.
Patch by Reinoud Elhorst.
llvm-svn: 205409
and isTargetCygwin() to isTargetWindowsCygwin() to be consistent with the
four Windows environments in Triple.h.
Suggestion by Saleem Abdulrasool!
llvm-svn: 205393
For the purpose of calculating the cost of the loop at various vectorization
factors, we need to count dependencies of consecutive pointers as uniforms
(which means that the VF = 1 cost is used for all overall VF values).
For example, the TSVC benchmark function s173 has:
...
%3 = add nsw i64 %indvars.iv, 16000
%arrayidx8 = getelementptr inbounds %struct.GlobalData* @global_data, i64 0, i32 0, i64 %3
...
and we must realize that the add will be a scalar in order to correctly deduce
it to be profitable to vectorize this on PowerPC with VSX enabled. In fact, all
dependencies of a consecutive pointer must be a scalar (uniform), and so we
simply need to add all consecutive pointers to the worklist that currently
detects collects uniforms.
Fixes PR19296.
llvm-svn: 205387
I'm not sure the comment in the implementation really adds a lot of
value (it's clear that we emit zero when no symbol is provided, but it
doesn't explain why we would do that). Happy to iterate.
llvm-svn: 205386
This removes the magic-number-esque code creating/retrieving the same
label for a debug_loc entry from two places and removes the last small
piece of reusable logic from emitDebugLoc so that there will be less
duplication when refactoring it into two functions (one for debug_loc,
the other for debug_loc.dwo).
llvm-svn: 205382
Seems we didn't have any test coverage for merging... awesome. So I
added some - but hit an llvm-objdump bug while I was there. I'm choosing
not to shave that yak right now.
Code review feedback/bug catch by Adrian Prantl in r205360.
llvm-svn: 205373
No test case (this would invoke UB by examining uninitialized members,
etc, at best - and this code is apparently untested anyway - I'm about
to fix that)
Code review feedback from Adrian Prantl on r205360.
llvm-svn: 205367
This provides an initial implementation of getUnrollingPreferences for x86.
getUnrollingPreferences is used by the generic (concatenation) unroller, which
is distinct from the unrolling done by the loop vectorizer. Many modern x86
cores have some kind of uop cache and loop-stream detector (LSD) used to
efficiently dispatch small loops, and taking full advantage of this requires
unrolling small loops (small here means 10s of uops).
These caches also have limits on the number of taken branches in the loop, and
so we also cap the loop unrolling factor based on the maximum "depth" of the
loop. This is currently calculated with a partial DFS traversal (partial
because it will stop early if the path length grows too much). This is still an
approximation, and one that is both conservative (because it does not account
for branches eliminated via block placement) and optimistic (because it is only
recording the maximum depth over minimum paths). Nevertheless, because the
loops that fit in these uop caches are so small, it is not clear how much the
details matter.
The original set of patches posted for review produced the following test-suite
performance results (from the TSVC benchmark) at that time:
ControlLoops-dbl - 13% speedup
ControlLoops-flt - 15% speedup
Reductions-dbl - 7.5% speedup
llvm-svn: 205348
In preparation for an upcoming commit implementing unrolling preferences for
x86, this adds additional fields to the UnrollingPreferences structure:
- PartialThreshold and PartialOptSizeThreshold - Like Threshold and
OptSizeThreshold, but used when not fully unrolling. These are necessary
because we need different thresholds for full unrolling from those used when
partially unrolling (the full unrolling thresholds are generally going to be
larger).
- MaxCount - A cap on the unrolling factor when partially unrolling. This can
be used by a target to prevent the unrolled loop from exceeding some
resource limit independent of the loop size (such as number of branches).
There should be no functionality change for any in-tree targets.
llvm-svn: 205347
The implementation of getUserCost had duplicated (and hard-coded) the default
logic in getGEPCost. Instead, it is better to use getGEPCost directly, which
limits the default logic to the implementation of one function, and allows
targets to override the behavior.
No functionality change intended.
llvm-svn: 205346
Identical to Win32 method except the GS segment register is used for TLS
instead of FS and pvArbitrary is at TEB offset 0x28 instead of 0x14.
llvm-svn: 205342
The Cyclone CPU is similar to swift for most LLVM purposes, but does have two
preferred instructions for zeroing a VFP register. This teaches LLVM about
them.
llvm-svn: 205309
This is for consistency with other functions. The Parse* functions consume
tokens and the Match* functions don't.
No functional change.
llvm-svn: 205305
Summary:
This should fix the issues the D3222 caused in lld. Testcase is based on
the one that failed in the buildbot.
Depends on D3233
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3234
llvm-svn: 205298
Summary:
Parsing registers no longer consume the $ token before it's confirmed whether it really has a register or not, therefore it's no longer impossible to match symbols if registers were tried first.
Depends on D3232
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3233
llvm-svn: 205297
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
llvm-svn: 205292
This moves one case of raw text checking down into the MCStreamer
interfaces in the form of a virtual function, even if we ultimately end
up consolidating on the one-or-many line tables issue one day, this is
nicer in the interim. This just generally streamlines a bunch of use
cases into a common code path.
llvm-svn: 205287
I don't think this is reachable by any frontend (why would you transform
asm to asm+debug info?) but it helps tidy up some of this code, avoid
the weird special case of "emit the first CU, store the label, then emit
the rest" in MCDwarfLineTable::Emit by instead having the
DWARF-for-assembly case use the same codepath as DwarfDebug.cpp, by
registering the label of the debug_line section, thus causing it to be
emitted. (with a special case in asm output to just emit the label since
asm output uses the .loc directives, etc, rather than the debug_loc
directly)
llvm-svn: 205286
No other functionality changes, DIBuilder testcase is included in a paired
CFE commit.
This relaxes the assertion in isScopeRef to also accept subclasses of
DIScope.
llvm-svn: 205279
The generic (concatenation) loop unroller is currently placed early in the
standard optimization pipeline. This is a good place to perform full unrolling,
but not the right place to perform partial/runtime unrolling. However, most
targets don't enable partial/runtime unrolling, so this never mattered.
However, even some x86 cores benefit from partial/runtime unrolling of very
small loops, and follow-up commits will enable this. First, we need to move
partial/runtime unrolling late in the optimization pipeline (importantly, this
is after SLP and loop vectorization, as vectorization can drastically change
the size of a loop), while keeping the full unrolling where it is now. This
change does just that.
llvm-svn: 205264
This reverts commit r205018.
Conflicts:
lib/Transforms/Vectorize/SLPVectorizer.cpp
test/Transforms/SLPVectorizer/X86/insert-element-build-vector.ll
This is breaking libclc build.
llvm-svn: 205260
This commit updates the stackmap format to version 1 to indicate the
reorganizaion of several fields. This was done in order to align stackmap
entries to their natural alignment and to minimize padding.
Fixes <rdar://problem/16005902>
llvm-svn: 205254
A value of 5 means if we have a split or spill option that has a really
low cost (1 << 14 is the entry frequency), we will choose to spill
or split the really cold path before using a callee-saved register.
This gives us the performance benefit on SPECInt2k and is also conservative.
rdar://16162005
llvm-svn: 205248
This adds the ability to expand large (meaning with more than two unique
defined values) BUILD_VECTOR nodes in terms of SCALAR_TO_VECTOR and (legal)
vector shuffles. There is now no limit of the size we are capable of expanding
this way, although we don't currently do this for vectors with many unique
values because of the default implementation of TLI's
shouldExpandBuildVectorWithShuffles function.
There is currently no functional change to any existing targets because the new
capabilities are not used unless some target overrides the TLI
shouldExpandBuildVectorWithShuffles function. As a result, I've not included a
test case for the new functionality in this commit, but regression tests will
(at least) be added soon when I commit support for the PPC QPX vector
instruction set.
The benefit of committing this now is that it makes the
shouldExpandBuildVectorWithShuffles callback, which had to be added for other
reasons regardless, fully functional. I suspect that other targets will
also benefit from tuning the heuristic.
llvm-svn: 205243
If we have two unique values for a v2i64 build vector, this will always result
in two vector loads if we expand using shuffles. Only one is necessary.
llvm-svn: 205231
There are two general methods for expanding a BUILD_VECTOR node:
1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
them together.
2. Build the vector on the stack and then load it.
Currently, we use a fixed heuristic: If there are only one or two unique
defined values, then we attempt an expansion in terms of SCALAR_TO_VECTOR and
vector shuffles (provided that the required shuffle mask is legal). Otherwise,
always expand via the stack. Even when SCALAR_TO_VECTOR is not legal, this
can still be a good idea depending on what tricks the target can play when
lowering the resulting shuffle. If the target can't do anything special,
however, and if SCALAR_TO_VECTOR is expanded via the stack, this heuristic
leads to sub-optimal code (two stack loads instead of one).
Because only the target knows whether the SCALAR_TO_VECTORs and shuffles for a
build vector of a particular type are likely to be optimial, this adds a new
TLI function: shouldExpandBuildVectorWithShuffles which takes the vector type
and the count of unique defined values. If this function returns true, then
method (1) will be used, subject to the constraint that all of the necessary
shuffles are legal (as determined by isShuffleMaskLegal). If this function
returns false, then method (2) is always used.
This commit does not enhance the current code to support expanding a
build_vector with more than two unique values using shuffles, but I'll commit
an implementation of the more-general case shortly.
llvm-svn: 205230
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
llvm-svn: 205229
part of an asm .symver directive as being used. This prevents referenced
functions from being internalized and deleted.
Without the patch to LTOModule.cpp, the test case will produce the error:
LLVM ERROR: A @@ version cannot be undefined.
llvm-svn: 205221
This generalises the object file type parsing to all Windows environments. This
is used by cygwin as well as MSVC environments for MCJIT. This also makes the
triple more similar to Chandler's suggestion of a separate field for the object
file format.
llvm-svn: 205219
Now that r205212 was committed, r203483 is no longer necessary; it was a
temporary workaround that only handled a small number of the problematic cases.
llvm-svn: 205216
This is a more thorough fix for the issue than r203483. An IR pass will run
before NVPTX codegen to make sure there are no invalid symbol names that can't
be consumed by the ptxas assembler.
llvm-svn: 205212
%got_hi, %got_lo, %call_hi, %call_lo, %higher, and %highest are now recognised
by MipsAsmParser::getVariantKind().
To prevent future issues with missing entries in this StringSwitch, I've added
an assertion to the default case.
llvm-svn: 205200
When the loop vectorizer vectorizes code that uses the loop induction variable,
we often end up with IR like this:
%b1 = insertelement <2 x i32> undef, i32 %v, i32 0
%b2 = shufflevector <2 x i32> %b1, <2 x i32> undef, <2 x i32> zeroinitializer
%i = add <2 x i32> %b2, <i32 2, i32 3>
If the add in this example is not legal (as is the case on PPC with VSX), it
will be scalarized, and we'll end up with a number of extract_vector_elt nodes
with the vector shuffle as the input operand, and that vector shuffle is fed by
one or more build_vector nodes. By the time that vector operations are
expanded, visitEXTRACT_VECTOR_ELT will not create new extract_vector_elt by
looking through the vector shuffle (to make sure that no illegal operations are
created), and so the extract_vector_elt -> vector shuffle -> build_vector is
never simplified to an operand of the build vector.
By looking at build_vectors through a shuffle we fix this particular situation,
preventing a vector from being built, only to be deconstructed again (for the
scalarized add) -- an expensive proposition when this all needs to be done via
the stack. We probably want a more comprehensive fix here where we look back
recursively through any shuffles to any build_vectors or scalar_to_vectors,
etc. but that can come later.
llvm-svn: 205179
Summary:
The FileHeader mapping now accepts an optional Flags sequence that accepts
the EF_<arch>_<flag> constants. When not given, Flags defaults to zero.
Reviewers: atanasyan
Reviewed By: atanasyan
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3213
llvm-svn: 205173
Previously, MinGW OS was Triple::MinGW and Cygwin was Triple::Cygwin
and now it is Triple::Win32 with Environment being GNU or Cygwin.
So,
TheTriple.getOS() == Triple::Win32
is replaced by
TheTriple.isWindowsMSVCEnvironment()
and
(TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin)
is replaced by
TheTriple.isOSCygMing()
llvm-svn: 205170
is not a pattern to lower this with clever instructions that zero the
register, so restrict the zero immediate legality special case to f64
and f32 (the only two sizes which fmov seems to directly support). Fixes
backend errors when building code such as libxml.
llvm-svn: 205161
There is no direct AVX instruction to convert to unsigned. I have some ideas
how we may be able to do this with three vector instructions but the current
backend just bails on this to get it scalarized.
See the comment why we need to adjust the cost returned by BasicTTI.
The test is a bit roundabout (and checks assembly rather than bit code) because
I'd like it to work even if at some point we could vectorize this conversion.
Fixes <rdar://problem/16371920>
llvm-svn: 205159
When expanding EXTRACT_VECTOR_ELT and EXTRACT_SUBVECTOR using
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack, we store the entire
vector and then load the piece we want. This is fine in isolation, but
generating a new store (and corresponding stack slot) for each extraction ends
up producing code of poor quality. When we scalarize a vector operation (using
SelectionDAG::UnrollVectorOp for example) we generate one EXTRACT_VECTOR_ELT
for each element in the vector. This used to generate one stored copy of the
vector for each element in the vector. Now we search the uses of the vector for
a suitable store before generating a new one, which results in much more
efficient scalarization code.
llvm-svn: 205153
sitofp from v2i32 to v2f64 ends up generating a SIGN_EXTEND_INREG v2i64 node
(and similarly for v2i16 and v2i8). Even though there are no sign-extension (or
algebraic shifts) for v2i64 types, we can handle v2i32 sign extensions by
converting two and from v2i64. The small trick necessary here is to shift the
i32 elements into the right lanes before the i32 -> f64 step. This is because
of the big Endian nature of the system, we need the i32 portion in the high
word of the i64 elements.
For v2i16 and v2i8 we can do the same, but we first use the default Altivec
shift-based expansion from v2i16 or v2i8 to v2i32 (by casting to v4i32) and
then apply the above procedure.
llvm-svn: 205146
parameters rather than runtime parameters.
There is only one user of these parameters and they are compile time for
that user. Making these compile time seems to better reflect their
intended usage as well.
llvm-svn: 205143
That causes references to them to be weak references which can collapse
to null if no definition is provided. We call these functions
unconditionally, so a definition *must* be provided. Make the
definitions provided in the .cpp file weak by re-declaring them as weak
just prior to defining them. This should keep compilers which cannot
attach the weak attribute to the definition happy while actually
resolving the symbols correctly during the link.
You might ask yourself upon reading this commit log: how did *any* of
this work before? Well, fun story. It turns out we have some code in
Support (BumpPtrAllocator) which both uses virtual dispatch and has
out-of-line vtables used by that virtual dispatch. If you move the
virtual dispatch into its header in *just* the right way, the optimizer
gets to devirtualize, and remove all references to the vtable. Then the
sad part: the references to this one vtable were the only strong symbol
uses in the support library for llvm-tblgen AFAICT. At least, after
doing something just like this, these symbols stopped getting their weak
definition and random calls to them would segfault instead.
Yay software.
llvm-svn: 205137
StringRef::lower() returns a std::string. Better yet, we can now stop
thinking about what it returns and write 'auto'. It does the right
thing. =]
llvm-svn: 205135
It was doing functional but highly suspect operations on bools due to
the more limited shifting operands supported by memory instructions.
Should fix some MSVC warnings.
llvm-svn: 205134
Actually, mostly only those in the top-level directory that already
had a "virtual" attached. But it's the thought that counts and it's
been a long day.
llvm-svn: 205131
If the environment is unknown and no object file is provided, then assume an
"MSVC" environment, otherwise, set the environment to the object file format.
In the case that we have a known environment but a non-native file format for
Windows (COFF) which is used for MCJIT, then append the custom file format to
the triple as an additional component.
This fixes the MCJIT tests on Windows.
llvm-svn: 205130
Patch by Tobias Güntner.
I tried to write a test, but the only difference is the Changed value that
gets returned. It can be tested with "opt -debug-pass=Executions -functionattrs,
but that doesn't seem worth it.
llvm-svn: 205121
This will fix cross-compiling buildbots (e.g. cygwin). This is in the same vein
as SVN r205070. Apply this to fix the cross-compiling scenario, even though the
preferred solution is to update the build system to normalize the embedded
triple rather than perform this at runtime every time. This is meant to tide us
over until that approach is fleshed out and applied.
llvm-svn: 205120
The ARM64 backend uses it only as a container to keep an MCLOHType and
Arguments around so give it its own little copy. The other functionality
isn't used and we had a crazy method specialization hack in place to
keep it working. Unfortunately that was incompatible with MSVC.
Also range-ify a couple of loops while at it.
llvm-svn: 205114
v2i64 is a legal type under VSX, however we don't have native vector
comparisons. We can handle eq/ne by casting it to an Altivec type, but
everything else must be expanded.
llvm-svn: 205106
The vector divide and sqrt instructions have high latencies, and the scalar
comparisons are like all of the others. On the P7, permutations take an extra
cycle over purely-simple vector ops.
llvm-svn: 205096
Issue subject: Crash using integrated assembler with immediate arithmetic
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 205094
no assert at all. ;] Some of these should probably be switched to
llvm_unreachable, but I didn't want to perturb the behavior in this
patch.
Found by -Wstring-conversion, which I'll try to turn on in CMake builds
at least as it is finding useful things.
llvm-svn: 205091
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090
ARM64 has compact-unwind information, but doesn't necessarily want to
emit .eh_frame directives as well. This teaches MC about such a
situation so that it will skip .eh_frame info when compact unwind has
been successfully produced.
For functions incompatible with compact unwind, the normal information
is still written.
llvm-svn: 205087
Given IR like:
%bit = and %val, #imm-with-1-bit-set
%tst = icmp %bit, 0
br i1 %tst, label %true, label %false
some targets can emit just a single instruction (tbz/tbnz in the
AArch64 case). However, with ISel acting at the basic-block level, all
three instructions need to be together for this to be possible.
This adds another transformation to CodeGenPrep to expose these
opportunities, if targets opt in via the hook.
llvm-svn: 205086
This is principally to allow neater mapping of fixups to relocations
in ARM64 ELF. Without this, there isn't enough information available
to GetRelocType, leading to many more fixup_arm64_... enumerators.
llvm-svn: 205085
Another part of the ARM64 backend (so tests will be following soon).
This is currently used by the linker to relax adrp/ldr pairs into nops
where possible, though could well be more broadly applicable.
llvm-svn: 205084
The upcoming ARM64 backend doesn't have section-relative relocations,
so we give each section its own symbol to provide this functionality.
Of course, it doesn't need to appear in the final executable, so
linker-private is the best kind for this purpose.
llvm-svn: 205081
This is like the LLVMMatchType, except the verifier checks that the
second argument is a vector with the same base type and half the
number of elements.
This will be used by the ARM64 backend.
llvm-svn: 205079
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
We had stored both f64 values and v2f64, etc. values in the VSX registers. This
worked, but was suboptimal because we would always spill 16-byte values even
through we almost always had scalar 8-byte values. This resulted in an
increase in stack-size use, extra memory bandwidth, etc. To fix this, I've
added 64-bit subregisters of the Altivec registers, and combined those with the
existing scalar floating-point registers to form a class of VSX scalar
floating-point registers. The ABI code has also been enhanced to use this
register class and some other necessary improvements have been made.
llvm-svn: 205075
Emit 32-bit register names instead of 64-bit register names if the target does
not have 64-bit general purpose registers.
<rdar://problem/14653996>
llvm-svn: 205067
Turns out debug_frame does use multiple fragments, so it doesn't
compress correctly with the current approach. Disable compressing it for
now while I figure out what's the best solution for it.
llvm-svn: 205059
WinCOFF cannot form PC relative relocations to support absolute
MCValues. We should reenable this once WinCOFF supports emission of
IMAGE_REL_I386_REL32 relocations.
This fixes PR19272.
llvm-svn: 205058
v2[fi]64 values need to be explicitly passed in VSX registers. This is because
the code in TRI that finds the minimal register class given a register and a
value type will assert if given an Altivec register and a non-Altivec type.
llvm-svn: 205041
This reverts commit r204912, and follow-up commit r204948.
This introduced a performance regression, and the fix is not completely
clear yet.
llvm-svn: 205010
This reverts commit r203553, and follow-up commits r203558 and r203574.
I will follow this up on the mailinglist to do it in a way that won't
cause subtle PRE bugs.
llvm-svn: 205009
This was causing my llc to go into an infinite loop on
CodeGen/R600/address-space.ll (just triggered recently by some allocator
changes).
llvm-svn: 205005
These are used in the ARM backends to aid type-checking on patterns involving
intrinsics. By making sure one argument is an extended/truncated version of
another.
However, there's no reason to limit them to just vectors types. For example
AArch64 has the instruction "uqshrn sD, dN, #imm" which would naturally use an
intrinsic taking an i64 and returning an i32.
llvm-svn: 205003
BumpPtrAllocator significantly less strange by making it a simple
function of the number of slabs allocated rather than by making it
a recurrance. I *think* the previous behavior was essentially that the
size of the slabs would be doubled after the first 128 were allocated,
and then doubled again each time 64 more were allocated, but only if
every allocation packed perfectly into the slab size. If not, the wasted
space wouldn't be counted toward increasing the size, but allocations
over the size threshold *would*. And since the allocations over the size
threshold might be much larger than the slab size, this could have
somewhat surprising consequences where we rapidly grow the slab size.
This currently requires adding state to the allocator to track the
number of slabs currently allocated, but that isn't too bad. I'm
planning further changes to the allocator that will make this state fall
out even more naturally.
It still doesn't fully decouple the growth rate from the allocations
which are over the size threshold. That fix is coming later.
This specific fix will allow making the entire thing into a more
stateless device and lifting the parameters into template parameters
rather than runtime parameters.
llvm-svn: 204993
top of the default jit memory manager. This will allow them to be used
as template parameters rather than runtime parameters in a subsequent
commit.
llvm-svn: 204992
As explained in r204976, because of how the allocation of VSX registers
interacts with the call-lowering code, we sometimes end up generating self VSX
copies. Specifically, things like this:
%VSL2<def> = COPY %F2, %VSL2<imp-use,kill>
(where %F2 is really a sub-register of %VSL2, and so this copy is a nop)
This adds a small cleanup pass to remove these prior to post-RA scheduling.
llvm-svn: 204980
Construct a uniform Windows target triple nomenclature which is congruent to the
Linux counterpart. The old triples are normalised to the new canonical form.
This cleans up the long-standing issue of odd naming for various Windows
environments.
There are four different environments on Windows:
MSVC: The MS ABI, MSVCRT environment as defined by Microsoft
GNU: The MinGW32/MinGW32-W64 environment which uses MSVCRT and auxiliary libraries
Itanium: The MSVCRT environment + libc++ built with Itanium ABI
Cygnus: The Cygwin environment which uses custom libraries for everything
The following spellings are now written as:
i686-pc-win32 => i686-pc-windows-msvc
i686-pc-mingw32 => i686-pc-windows-gnu
i686-pc-cygwin => i686-pc-windows-cygnus
This should be sufficiently flexible to allow us to target other windows
environments in the future as necessary.
llvm-svn: 204977
Because of how the allocation of VSX registers interacts with the call-lowering
code, we sometimes end up generating self VSX copies. Specifically, things like
this:
%VSL2<def> = COPY %F2, %VSL2<imp-use,kill>
(where %F2 is really a sub-register of %VSL2, and so this copy is a nop)
The problem is that ExpandPostRAPseudos always assumes that *some* instruction
has been inserted, and adds implicit defs to it. This is a problem if no copy
was inserted because it can cause subtle problems during post-RA scheduling.
These self copies will have to be removed some other way.
llvm-svn: 204976
First, v2f64 vector extract had not been declared legal (and so the existing
patterns were not being used). Second, the patterns for that, and for
scalar_to_vector, should really be a regclass copy, not a subregister
operation, because the VSX registers directly hold both the vector and scalar data.
llvm-svn: 204971
These operations need to be expanded during legalization so that isel does not
crash. In theory, we might be able to custom lower some of these. That,
however, would need to be follow-up work.
llvm-svn: 204963
1) When creating a .debug_* section and instead create a .zdebug_
section.
2) When creating a fragment in a .zdebug_* section, make it a compressed
fragment.
3) When computing the size of a compressed section, compress the data
and use the size of the compressed data.
4) Emit the compressed bytes.
Also, check that only if a section has a compressed fragment, then that
is the only fragment in the section.
Assert-fail if the fragment's data is modified after it is compressed.
Initial review on llvm-commits by Eric Christopher and Rafael Espindola.
llvm-svn: 204958
Fixes a miscompile introduced in r204912. It would miscompile code like
(unsigned)(a + -49) <= 5U. The transform would turn this into
(unsigned)a < 55U, which would return true for values in [0, 49], when
it should not.
llvm-svn: 204948
Summary:
No functional change since these predicates are (currently) synonymous.
Extracted from a patch by David Chisnall
His work was sponsored by: DARPA, AFRL
Differential Revision: http://llvm-reviews.chandlerc.com/D3202
llvm-svn: 204943
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204934
Summary:
Patch by Robert N. M. Watson
His work was sponsored by: DARPA, AFRL
Small corrections by myself.
CC: theraven, matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3199
llvm-svn: 204924
of MCELFStreamer.
This is so that changes to MipsELFStreamer will automatically propagate through
its subclasses.
No functional changes (MipsELFStreamer has the same functionality of MCELFStreamer
at the moment).
Differential Revision: http://llvm-reviews.chandlerc.com/D3130
llvm-svn: 204918
This allows us to insert some hooks before emitting data into an actual object file.
For example, we can capture the register usage for a translation unit by overriding
the EmitInstruction method. The register usage information is needed to generate
.reginfo and .Mips.options ELF sections.
No functional changes.
Differential Revision: http://llvm-reviews.chandlerc.com/D3129
llvm-svn: 204917
Summary:
The short name is quite convenient so provide an accessor for them instead.
No functional change
Depends on D3177
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3178
llvm-svn: 204911
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 204899
Summary:
Tested with a unit test because we don't appear to have any transforms
that use this other than ASan, I think.
Fixes PR17935.
Reviewers: nicholas
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3194
llvm-svn: 204866
Functions may in an instrumented binary but not in the original source
when they're inserted by the compiler or the runtime. These functions
aren't meaningful to the user, so teach llvm-cov to skip over them
instead of crashing.
llvm-svn: 204863
vector list parameter that is using all lanes "{d0[], d2[]}" but can
match and instruction with a ”{d0, d2}" parameter.
I’m finishing up a fix for proper checking of the unsupported
alignments on vld/vst instructions and ran into this. Thus I don’t
have a test case at this time. And adding all code that will
demonstrate the bug would obscure the very simple one line fix.
So if you would indulge me on not having a test case at this
time I’ll instead offer up a detailed explanation of what is
going on in this commit message.
This instruction:
vld2.8 {d0[], d2[]}, [r4:64]
is not legal as the alignment can only be 16 when the size is 8.
Per this documentation:
A8.8.325 VLD2 (single 2-element structure to all lanes)
<align> The alignment. It can be one of:
16 2-byte alignment, available only if <size> is 8, encoded as a = 1.
32 4-byte alignment, available only if <size> is 16, encoded as a = 1.
64 8-byte alignment, available only if <size> is 32, encoded as a = 1.
omitted Standard alignment, see Unaligned data access on page A3-108.
So when code is added to the llvm integrated assembler to not match
that instruction because of the alignment it then goes on to try to match
other instructions and comes across this:
vld2.8 {d0, d2}, [r4:64]
and and matches it. This is because of the method
ARMOperand::isVecListDPairSpaced() is missing the check of the Kind.
In this case the Kind is k_VectorListAllLanes . While the name of the method
may suggest that this is OK it really should check that the Kind is
k_VectorList.
As the method ARMOperand::isDoubleSpacedVectorAllLanes() is what was
used to match {d0[], d2[]} and correctly checks the Kind:
bool isDoubleSpacedVectorAllLanes() const {
return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
}
where the original ARMOperand::isVecListDPairSpaced() does not check
the Kind:
bool isVecListDPairSpaced() const {
if (isSingleSpacedVectorList()) return false;
return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
.contains(VectorList.RegNum));
}
Jim Grosbach has reviewed the change and said: Yep, that sounds right. …
And by "right" I mean, "wow, that's a nasty latent bug I'm really, really
glad to see fixed." :)
rdar://16436683
llvm-svn: 204861
This commit consist of two parts.
The first part fix the PR15967. The wrong conclusion was made when the MaxLookup
limit was reached. The fix introduce a out parameter (MaxLookupReached) to
DecomposeGEPExpression that the function aliasGEP can act upon.
The second part is introducing the constant MaxLookupSearchDepth to make sure
that DecomposeGEPExpression and GetUnderlyingObject use the same search depth.
This is a small cleanup to clarify the original algorithm.
Patch by Karl-Johan Karlsson!
llvm-svn: 204859
These patterns are dead (because v4f32 stores are currently promoted to v4i32
and stored using Altivec instructions), and also are likely not correct
(because they'd store the vector elements in the opposite order from that
assumed by the rest of the Altivec code).
llvm-svn: 204839
These instructions have access to the complete VSX register file. In addition,
they "swap" the order of the elements so that element 0 (the scalar part) comes
first in memory and element 1 follows at a higher address.
llvm-svn: 204838
In some cases it is possible for CGP to attempt to reuse a base address from
another basic block. In those cases we have to be sure that all the address
math was either done at the same bit width, or that none of it overflowed
before it was extended.
Patch by Louis Gerbarg <lgg@apple.com>
rdar://16307442
llvm-svn: 204833
> For functions where esi is used as base pointer, we would previously fall ba
> from lowering memcpy with "rep movs" because that clobbers esi.
>
> With this patch, we just store esi in another physical register, and restore
> it afterwards. This adds a little bit of register preassure, but the more
> efficient memcpy should be worth it.
>
> Differential Revision: http://llvm-reviews.chandlerc.com/D2968
This didn't work. I was ending up with code like this:
lea edi,[esi+38h]
mov ecx,0Fh
mov edx,esi
mov esi,ebx
rep movs dword ptr es:[edi],dword ptr [esi]
lea ecx,[esi+74h] <-- Ooops, we're now using esi before restoring it from edx.
add ebx,3Ch
mov esi,edx
I guess if we want to do this we need stronger glue or something, or doing the expansion
much later.
llvm-svn: 204829
v2i64 needs to be a legal VSX type because it is the SetCC result type from
v2f64 comparisons. We need to expand all non-arithmetic v2i64 operations.
This fixes the lowering for v2f64 VSELECT.
llvm-svn: 204828
This enables TableGen to generate an additional two operand matcher
for our ArithLogicR class of instructions (constituted by 3 register operands).
E.g.: and $1, $2 <=> and $1, $1, $2
llvm-svn: 204826
parseDirectiveWord is a generic function that parses an expression which
means there's no need for it to have such an specific name. Renaming it to
parseDataDirective so that it can also be used to handle .dword directives[1].
[1]To be added in a follow up commit.
No functional changes.
llvm-svn: 204818
The '.set mips64' directive enables the feature Mips:FeatureMips64
from assembly. Note that it doesn't modify the ELF header as opposed
to the use of -mips64 from the command-line. The reason for this
is that we want to be as compatible as possible with existing assemblers
like GAS.
llvm-svn: 204817
The '.set mips64r2' directive enables the feature Mips:FeatureMips64r2
from assembly. Note that it doesn't modify the ELF header as opposed
to the use of -mips64r2 from the command-line. The reason for this
is that we want to be as compatible as possible with existing assemblers
like GAS.
llvm-svn: 204815
We've already got versions without the barriers, so this just adds IR-level
support for generating the new v8 ones.
rdar://problem/16227836
llvm-svn: 204813
Given that we support multiple directives that enable a particular feature
(e.g. '.set mips16'), it's best to hoist that code into a new function
so that we don't repeat the same pattern w.r.t parsing and handling error cases.
No functional changes.
llvm-svn: 204811
After some discussion on IRC, emitting a call to the library function seems
like a better default, since it will move from a compiler internal error to
a linker error, that the user can work around until LLVM is fixed.
I'm also adding a note on the responsibility of the user to confirm that
the cache was cleared on platforms where nothing is done.
llvm-svn: 204806