Summary:
This patch adds backend support for -Rpass=, which indicates the name
of the optimization pass that should emit remarks stating when it
made a transformation to the code.
Pass names are taken from their DEBUG_NAME definitions.
When emitting an optimization report diagnostic, the lack of debug
information causes the diagnostic to use "<unknown>:0:0" as the
location string.
This is the back end counterpart for
http://llvm-reviews.chandlerc.com/D3226
Reviewers: qcolombet
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3227
llvm-svn: 205774
Some Intrinsics are overloaded to the extent that return type equality (all
that's been checked up to now) does not guarantee that the arguments are the
same. In these cases SLP vectorizer should not recurse into the operands, which
can be achieved by comparing them as "Function *" rather than simply the ID.
llvm-svn: 205424
For the purpose of calculating the cost of the loop at various vectorization
factors, we need to count dependencies of consecutive pointers as uniforms
(which means that the VF = 1 cost is used for all overall VF values).
For example, the TSVC benchmark function s173 has:
...
%3 = add nsw i64 %indvars.iv, 16000
%arrayidx8 = getelementptr inbounds %struct.GlobalData* @global_data, i64 0, i32 0, i64 %3
...
and we must realize that the add will be a scalar in order to correctly deduce
it to be profitable to vectorize this on PowerPC with VSX enabled. In fact, all
dependencies of a consecutive pointer must be a scalar (uniform), and so we
simply need to add all consecutive pointers to the worklist that currently
detects collects uniforms.
Fixes PR19296.
llvm-svn: 205387
In preparation for an upcoming commit implementing unrolling preferences for
x86, this adds additional fields to the UnrollingPreferences structure:
- PartialThreshold and PartialOptSizeThreshold - Like Threshold and
OptSizeThreshold, but used when not fully unrolling. These are necessary
because we need different thresholds for full unrolling from those used when
partially unrolling (the full unrolling thresholds are generally going to be
larger).
- MaxCount - A cap on the unrolling factor when partially unrolling. This can
be used by a target to prevent the unrolled loop from exceeding some
resource limit independent of the loop size (such as number of branches).
There should be no functionality change for any in-tree targets.
llvm-svn: 205347
The generic (concatenation) loop unroller is currently placed early in the
standard optimization pipeline. This is a good place to perform full unrolling,
but not the right place to perform partial/runtime unrolling. However, most
targets don't enable partial/runtime unrolling, so this never mattered.
However, even some x86 cores benefit from partial/runtime unrolling of very
small loops, and follow-up commits will enable this. First, we need to move
partial/runtime unrolling late in the optimization pipeline (importantly, this
is after SLP and loop vectorization, as vectorization can drastically change
the size of a loop), while keeping the full unrolling where it is now. This
change does just that.
llvm-svn: 205264
This reverts commit r205018.
Conflicts:
lib/Transforms/Vectorize/SLPVectorizer.cpp
test/Transforms/SLPVectorizer/X86/insert-element-build-vector.ll
This is breaking libclc build.
llvm-svn: 205260
Patch by Tobias Güntner.
I tried to write a test, but the only difference is the Changed value that
gets returned. It can be tested with "opt -debug-pass=Executions -functionattrs,
but that doesn't seem worth it.
llvm-svn: 205121
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090
This reverts commit r204912, and follow-up commit r204948.
This introduced a performance regression, and the fix is not completely
clear yet.
llvm-svn: 205010
This reverts commit r203553, and follow-up commits r203558 and r203574.
I will follow this up on the mailinglist to do it in a way that won't
cause subtle PRE bugs.
llvm-svn: 205009
Fixes a miscompile introduced in r204912. It would miscompile code like
(unsigned)(a + -49) <= 5U. The transform would turn this into
(unsigned)a < 55U, which would return true for values in [0, 49], when
it should not.
llvm-svn: 204948
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204934
Summary:
Tested with a unit test because we don't appear to have any transforms
that use this other than ASan, I think.
Fixes PR17935.
Reviewers: nicholas
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3194
llvm-svn: 204866
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
llvm-svn: 204784
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204781
Summary:
Previously the code didn't check if the before and after types for the
store were pointers to different address spaces. This resulted in
instcombine using a bitcast to convert between pointers to different
address spaces, causing an assertion due to the invalid cast.
It is not be appropriate to use addrspacecast this case because it is
not guaranteed to be a no-op cast. Instead bail out and do not do the
transformation.
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3117
llvm-svn: 204733
Extracts coming from phis were being hoisted, while all others were
sunk to their uses. This was inconsistent and didn't seem to serve a
purpose. Changing all extracts to be sunk to uses is a prerequisite
for adding block frequency to the SLP vectorizer's cost model.
I benchmarked the change in isolation (without block frequency). I
only saw noise on x86 and some potentially significant improvements on
ARM. No major regressions is good enough for me.
llvm-svn: 204699
The cleanup code that removes dead cast instructions only removed them from the
basic block, but didn't delete them. This fix erases them now too.
llvm-svn: 204538
A PHI node usually has only one value/basic block pair per incoming basic block.
In the case of a switch statement it is possible that a following PHI node may
have more than one such pair per incoming basic block. E.g.:
%0 = phi i64 [ 123456, %case2 ], [ 654321, %Entry ], [ 654321, %Entry ]
This is valid and the verfier doesn't complain, because both values are the
same.
Constant hoisting materializes the constant for each operand separately and the
value is still the same, but the variable names have changed. As a result the
verfier can't recognize anymore that they are the same value and complains.
This fix adds special update code for PHI node in constant hoisting to prevent
this corner case.
This fixes <rdar://problem/16394449>
llvm-svn: 204537
Extend the target hook to take also the operand index into account when
calculating the cost of the constant materialization.
Related to <rdar://problem/16381500>
llvm-svn: 204435
Originally the algorithm would search for expensive constants and track their
users, which could be instructions and constant expressions. This change only
tracks the constants for instructions, but constant expressions are indirectly
covered too. If an operand is an constant expression, then we look through the
expression to find anny expensive constants.
The algorithm keep now track of the instruction and the operand index where the
constant is used. This allows more precise hoisting of constant materialization
code for PHI instructions, because we only hoist to the basic block of the
incoming operand. Before we had to find the idom of all PHI operands and hoist
the materialization code there.
This also makes updating of instructions easier. Before we had to keep track of
the original constant, find it in the instructions, and then replace it. Now we
can just simply update the operand.
Related to <rdar://problem/16381500>
llvm-svn: 204433
This simplifies working with the constant candidates and removes the tight
coupling between the map and the vector.
Related to <rdar://problem/16381500>
llvm-svn: 204431
This commit extends the coverage of the constant hoisting pass, adds additonal
debug output and updates the function names according to the style guide.
Related to <rdar://problem/16381500>
llvm-svn: 204389
This option caused LowerInvoke to generate code using SJLJ-based
exception handling, but there is no code left that interprets the
jmp_buf stack that the resulting code maintained (llvm.sjljeh.jblist).
This option has been obsolete for a while, and replaced by
SjLjEHPrepare.
This leaves the default behaviour of LowerInvoke, which is to convert
invokes to calls.
Differential Revision: http://llvm-reviews.chandlerc.com/D3136
llvm-svn: 204388