templates, e.g.,
x.template get<T>
We can now parse these, represent them within an UnresolvedMemberExpr
expression, then instantiate that expression node in simple cases.
This allows us to stumble through parsing LLVM's Casting.h.
llvm-svn: 81300
expressions, e.g.,
p->~T()
when p is a pointer to a scalar type.
We don't currently diagnose errors when pseudo-destructor expressions
are used in any way other than by forming a call.
llvm-svn: 81009
involve qualified names, e.g., x->Base::f. We now maintain enough
information in the AST to compare the results of the name lookup of
"Base" in the scope of the postfix-expression (determined at template
definition time) and in the type of the object expression.
llvm-svn: 80953
t->Base::f
where t has a dependent type. We save the nested-name-specifier in the
CXXUnresolvedMemberExpr then, during instantiation, substitute into
the nested-name-specifier with the (transformed) object type of t, so
that we get name lookup into the type of the object expression.
Note that we do not yet retain information about name lookup into the
lexical scope of the member access expression, so several regression
tests are still disabled.
llvm-svn: 80925
1) Issue digsnostics in non-fragile ABI, when an expression
evaluates to an interface type (except when it is used to
access a non-fragile ivar).
2) Issue unsupported error in fragile ABI when an expression
evaluates to an interface type (except when it is used to
access a fragile ivar).
llvm-svn: 80860
space within the MemberExpr for the nested-name-specifier and its
source range. We'll do the same thing with explicitly-specified
template arguments, assuming I don't flip-flop again.
llvm-svn: 80642
When performing template instantiation of the definitions of member
templates (or members thereof), we build a data structure containing
the template arguments from each "level" of template
instantiation. During template instantiation, we substitute all levels
of template arguments simultaneously.
llvm-svn: 80389
name, e.g.,
x->Base::f()
retain the qualifier (and its source range information) in a new
subclass of MemberExpr called CXXQualifiedMemberExpr. Provide
construction, transformation, profiling, printing, etc., for this new
expression type.
When a virtual function is called via a qualified name, don't emit a
virtual call. Instead, call that function directly. Mike, could you
add a CodeGen test for this, too?
llvm-svn: 80167
pointers, by extending the "composite pointer type" logic to include
member pointer types.
Introduce test cases for member pointer comparisons, including those
that involve the builtin operator candidates implemented earlier.
llvm-svn: 79925
avoid emitting a warning on "someptr > 0". This is obviously questionable (they
could use != instead) but is reasonable, and the warning "ordered comparison
between pointer and integer" didn't make a ton of sense because 0 is a valid
null pointer constant.
Just silence the warning in this case, it is unlikely to indicate a bug.
llvm-svn: 79743
- Allowing one to name a member function template within a class
template and on the right-hand side of a member access expression.
- Template argument deduction for calls to member function templates.
- Registering specializations of member function templates (and
finding them later).
llvm-svn: 79581
where sizeof(short) == sizeof(int). Move UsualArithmeticConversionsType
out of Sema, since it was only there as a historical artifact. Patch by
Enea Zaffanella.
llvm-svn: 79412
This currently breaks test/SemaObjC/id-isa-ref.m and issues some spurious warnings when you attempt to assign a struct objc_class* value to a Class variable. The test case probably should fail as it's written, because without the definition of Class the compiler should not assume struct objc_class* is a valid receiver type, but it's left broken because it would be nice if we could get that passing too for the special case of isa.
Approved by snaroff.
llvm-svn: 79248
Fixes PR4704 problems
Addresses Eli's patch feedback re: ugly cast code
Updates all postfix operators to remove ParenListExprs. While this is awful,
no better solution (say, in the parser) is obvious to me. Better solutions
welcome.
llvm-svn: 78621
--- Reverse-merging r78535 into '.':
D test/Sema/altivec-init.c
U include/clang/Basic/DiagnosticSemaKinds.td
U include/clang/AST/Expr.h
U include/clang/AST/StmtNodes.def
U include/clang/Parse/Parser.h
U include/clang/Parse/Action.h
U tools/clang-cc/clang-cc.cpp
U lib/Frontend/PrintParserCallbacks.cpp
U lib/CodeGen/CGExprScalar.cpp
U lib/Sema/SemaInit.cpp
U lib/Sema/Sema.h
U lib/Sema/SemaExpr.cpp
U lib/Sema/SemaTemplateInstantiateExpr.cpp
U lib/AST/StmtProfile.cpp
U lib/AST/Expr.cpp
U lib/AST/StmtPrinter.cpp
U lib/Parse/ParseExpr.cpp
U lib/Parse/ParseExprCXX.cpp
llvm-svn: 78551
In addition to being defined by the AltiVec PIM, this is also the vector
initializer syntax used by OpenCL, so that vector literals are compatible
with macro arguments.
llvm-svn: 78535
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
A template name can refer to a set of overloaded function
templates. Model this in TemplateName, which can now refer to an
OverloadedFunctionDecl that contains function templates. This removes
an unspeakable hack in Sema::isTemplateName.
llvm-svn: 77488
Remove XFAIL from 'conditional-expr-4.m' test case (which would have caught this).
Also tweaked several aspects of the test to jive with the current type checking.
llvm-svn: 77453
Note that this also fixes a bug that affects non-template code, where we
were not treating out-of-line static data members are "file-scope" variables,
and therefore not checking their initializers.
llvm-svn: 77002
Enhance test case to cover 'isa' access on interface types (clang produces an error, GCC produces a warning).
Still need back-end CodeGen for ObjCIsaExpr.
llvm-svn: 76979
- Move Sema::ObjCQualifiedIdTypesAreCompatible(), Sema::QualifiedIdConformsQualifiedId(), and a couple helper functions to ASTContext.
- Change ASTContext::canAssignObjCInterfaces() to use ASTContext:: ObjCQualifiedIdTypesAreCompatible().
- Tweak several test cases to accommodate the new/improved type checking.
llvm-svn: 76830
- Remove Sema::CheckPointeeTypesForAssignment(), a temporary API I added to ease migration to ObjCObjectPointerType. Convert Sema::CheckAssignmentConstraints() to no longer depend on the temporary API.
- Sema::ConvertDeclSpecToType(): Replace a couple FIXME's with an important comment/example.
- Sema::GetTypeForDeclarator(): Get the protocol's from the interface, NOT the declspec (to support the following C typedef idiom: "typedef C<P> T; T *obj").
- Sema::ObjCQualifiedIdTypesAreCompatible(): Removed some dead code.
- ASTContext::getObjCEncodingForTypeImpl(): Some minor cleanups.
llvm-svn: 76443
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193
This method is intended to eventually replace the individual
Type::getAsXXXType<> methods.
The motivation behind this change is twofold:
1) Reduce redundant implementations of Type::getAsXXXType() methods. Most of
them are basically copy-and-paste.
2) By centralizing the implementation of the getAs<Type> logic we can more
smoothly move over to Doug Gregor's proposed canonical type smart pointer
scheme.
Along with this patch:
a) Removed 'Type::getAsPointerType()'; now clients use getAs<PointerType>.
b) Removed 'Type::getAsBlockPointerTypE()'; now clients use getAs<BlockPointerType>.
llvm-svn: 76098
This removes the static data/methods on ObjCObjectPointerType while preserving the nice API (no need to fiddle with ASTContext:-).
This patch also adds Type::isObjCBuiltinType().
This should be the last fairly large patch related to recrafting the ObjC type system. The follow-on patches should be fairly small.
llvm-svn: 75808
I don't love the name, however it simplifies the code and is a worthwhile change. If/when we come up with a better name, we can do a search/replace.
llvm-svn: 75650
warning: ‘OPT’ may be used uninitialized in this function
Now OPT is initialized to NULL. I'm not certain if this is the correct fix;
others please review.
llvm-svn: 75321
The idea is to segregate Objective-C "object" pointers from general C pointers (utilizing the recently added ObjCObjectPointerType). The fun starts in Sema::GetTypeForDeclarator(), where "SomeInterface *" is now represented by a single AST node (rather than a PointerType whose Pointee is an ObjCInterfaceType). Since a significant amount of code assumed ObjC object pointers where based on C pointers/structs, this patch is very tedious. It should also explain why it is hard to accomplish this in smaller, self-contained patches.
This patch does most of the "heavy lifting" related to moving from PointerType->ObjCObjectPointerType. It doesn't include all potential "cleanups". The good news is additional cleanups can be done later (some are noted in the code). This patch is so large that I didn't want to include any changes that are purely aesthetic.
By making the ObjC types truly built-in, they are much easier to work with (and require fewer "hacks"). For example, there is no need for ASTContext::isObjCIdStructType() or ASTContext::isObjCClassStructType()! We believe this change (and the follow-up cleanups) will pay dividends over time.
Given the amount of code change, I do expect some fallout from this change (though it does pass all of the clang tests). If you notice any problems, please let us know asap! Thanks.
llvm-svn: 75314
function template. Most of the change here is in factoring out the
common bits used for template argument deduction from a function call
and when taking the address of a function template.
llvm-svn: 75044
This was necessary to simplify some other changes I'm making (wrt ObjC type cleanups).
The idea is to separate the constraint checks for block pointers, ObjC pointers, and C pointers (the previous code combined them into one clause).
Note: This routine will be further simplified when I integrate the ObjC type cleanups (forthcoming).
llvm-svn: 74604
substitute those template arguments into the function parameter types
prior to template argument deduction. There's still a bit of work to
do to make this work properly when only some of the template arguments
are specified.
llvm-svn: 74576
instantiation stack so that we provide a full instantiation
backtrace. Previously, we performed all of the instantiations implied
by the recursion, but each looked like a "top-level" instantiation.
The included test case tests the previous fix for the instantiation of
DeclRefExprs. Note that the "instantiated from" diagnostics still
don't tell us which template arguments we're instantiating with.
llvm-svn: 74540
"semantic analysis" part. Use the "semantic analysis" part when
performing template instantiation on a DeclRefExpr, rather than an ad
hoc list of rules to construct DeclRefExprs from the instantiation.
A test case for this change will come in with a large commit, which
illustrates what I was actually trying to work on.
llvm-svn: 74528
Remove ASTContext parameter from DeclContext's methods. This change cascaded down to other Decl's methods and changes to call sites started "escalating".
Timings using pre-tokenized "cocoa.h" showed only a ~1% increase in time run between and after this commit.
llvm-svn: 74506
The implementations of these methods can Use Decl::getASTContext() to get the ASTContext.
This commit touches a lot of files since call sites for these methods are everywhere.
I used pre-tokenized "carbon.h" and "cocoa.h" headers to do some timings, and there was no real time difference between before the commit and after it.
llvm-svn: 74501
Handle rules for ExtVector + ExtVector and ExtVector + Scalar operations.
Fix problem Eli noticed where we were allowing pointer types to be splatted to
vector elements.
llvm-svn: 74404
For a FunctionDecl that has been instantiated due to template argument
deduction, we now store the primary template from which it was
instantiated and the deduced template arguments. From this
information, we can instantiate the body of the function template.
llvm-svn: 74232
templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
compilation, and (hopefully) introduce RAII objects for changing the
"potentially evaluated" state at all of the necessary places within
Sema and Parser. Other changes:
- Set the unevaluated/potentially-evaluated context appropriately
during template instantiation.
- We now recognize three different states while parsing or
instantiating expressions: unevaluated, potentially evaluated, and
potentially potentially evaluated (for C++'s typeid).
- When we're in a potentially potentially-evaluated context, queue
up MarkDeclarationReferenced calls in a stack. For C++ typeid
expressions that are potentially evaluated, we will play back
these MarkDeclarationReferenced calls when we exit the
corresponding potentially potentially-evaluated context.
- Non-type template arguments are now parsed as constant
expressions, so they are not potentially-evaluated.
llvm-svn: 73899
C++. This logic is required to trigger implicit instantiation of
function templates and member functions of class templates, which will
be implemented separately.
This commit includes support for -Wunused-parameter, printing warnings
for named parameters that are not used within a function/Objective-C
method/block. Fixes <rdar://problem/6505209>.
llvm-svn: 73797
Add a type (ObjCObjectPointerType) and remove a type (ObjCQualifiedIdType).
This large/tedious patch is just a first step. Next step is to remove ObjCQualifiedInterfaceType. After that, I will remove the magic TypedefType for 'id' (installed by Sema). This work will enable various simplifications throughout clang (when dealing with ObjC types).
No functionality change.
llvm-svn: 73649
(Actually, this isn't precisely correct, but it doesn't make
sense to query whether an expression that isn't an ICE is
value-dependent anyway.)
llvm-svn: 73179
hack which introduces some strange inconsistencies in compatibility
for block pointers.
Note that unlike an earlier revision proposed on cfe-commits, this patch
still allows declaring block pointers without a prototype.
llvm-svn: 73041
definition variadic. I'm not completely sure it's legal, but the
standard can be interpreted as making it legal, and gcc seems to think
it's legal, so I didn't add an extension warning.
llvm-svn: 72689
expressions. This change introduces another AST node,
CXXUnresolvedMemberExpr, that captures member references (x->m, x.m)
when the base of the expression (the "x") is type-dependent, and we
therefore cannot resolve the member reference yet.
Note that our parsing of member references for C++ is still quite
poor, e.g., we don't handle x->Base::m or x->operator int.
llvm-svn: 72281
alternatives, but please correct me if I'm wrong.
I eventually plan to assert in mergeTypes that we aren't in C++ mode
because composite types are fundamentally not a part of C++. The
remaining callers for code in the regression tests are
Sema::WarnConflictingTypedMethods and CodeGenFunction::EmitFunctionProlog;
I'm not quite sure what the correct approach is for those callers.
llvm-svn: 71946
in C++, taking into account conversions to the "composite pointer
type" so that we can compare, e.g., a pointer to a derived class to a
pointer to a base class.
Also, upgrade the "comparing distinct pointer types" from a warning to
an error for C++, since this is clearly an error. Turns out that we
hadn't gone through and audited this code for C++, ever.
Fixes <rdar://problem/6816420>.
llvm-svn: 70829
into the left-hand side of an assignment expression. This completes
most of PR3500; the only remaining part is to deal with the
GCC-specific implementation-defined behavior for "unsigned long" (and
other) bit-fields.
llvm-svn: 70623
type and argument types are missing, and let return type deduction
happen before we give errors for returning from a noreturn block.
Radar 6441502
llvm-svn: 70413
"function designator".
(This causes a minor glitch in the
diagnostics for C++ member pointers, but we weren't printing the
right diagnostic there anyway.)
llvm-svn: 70307
offsetof correctly in the presence of anonymous structs/unions.
This could definitely use some cleanup, but I don't really want to mess
with the anonymous union/struct code.
llvm-svn: 70156
Overall, I'm not particularly happy with the current situation regarding
constant expression diagnostics, but I plan to improve it at some point.
llvm-svn: 70089
VerifyIntegerConstantExpression instead of isIntegerConstantExpr.
This makes it ext-warn but tolerate things that fold to a constant
but that are not valid i-c-e's.
There must be a bug in the i-c-e computation though, because it
doesn't catch this case even with pedantic.
This also switches the later code to use EvaluateAsInt which is
simpler and handles everything that evaluate does.
llvm-svn: 70081
always return a non-null QualType + error bit. This fixes a bunch of
cases that didn't check for null result (and could thus crash) and eliminates
some crappy code scattered throughout sema.
This also improves the diagnostics in the recursive struct case to eliminate
a bogus second error. It also cleans up the case added to function.c by forming
a proper function type even though the declarator is erroneous, allowing the
parameter to be added to the function. Before:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*P)
^
t.c:4:3: error: use of undeclared identifier 'P'
P+1;
^
After:
t.c:2:1: error: unknown type name 'unknown_type'
unknown_type f(void*P)
^
llvm-svn: 70023
by correctly propagating the fact that the type was invalid up to the
attributeRuns decl, then returning an ExprError when attributeRuns is
formed (like we do for normal declrefexprs).
llvm-svn: 69998
Several changes here:
1. We change Type::isIncompleteType to realize that forward declared
interfaces are incomplete. This eliminate special case code for this
from the sizeof path, and starts us rejecting P[4] when P is a pointer
to an incomplete interface.
2. Explicitly reject P[4] when P points to an interface in non-fragile ABI
mode.
3. Switch the sizeof(interface) diagnostic back to an error instead of a
warning in non-fragile abi mode.
llvm-svn: 69943
As part of this, make ObjCImplDecl inherit from NamedDecl (since
ObjCImplementationDecls now need to have names so that they can be
found). This brings ObjCImplDecl very, very close to
ObjCContainerDecl; we may be able to merge them soon.
llvm-svn: 69941
methods, class methods, and property implementations) and instead
place all of these entities into the DeclContext.
This eliminates more linear walks when looking for class or instance
methods and should make PCH (de-)serialization of ObjCDecls trivial
(and lazy).
llvm-svn: 69849
mark exactly the blocks which have references that are "live through".
This fixes a rejects valid:
rdar://6808730 - [sema] [blocks] block rejected at global scope
llvm-svn: 69738
minor accepts-invalid regressions, but we weren't really rejecting them for
the right reason. We really need a more general solution to detect all the
cases of the promotion of arrays with a register storage class.
llvm-svn: 69586
lazy PCH deserialization. Propagate that argument wherever it needs to
be. No functionality change, except that I've tightened up a few PCH
tests in preparation.
llvm-svn: 69406
Remove an atrocious amount of trailing whitespace in the overloaded operator mangler. Sorry, couldn't help myself.
Change the DeclType parameter of Sema::CheckReferenceInit to be passed by value instead of reference. It wasn't changed anywhere.
Let the parser handle C++'s irregular grammar around assignment-expression and conditional-expression.
And finally, the reason for all this stuff: implement C++ semantics for the conditional operator. The implementation is complete except for determining lvalueness.
llvm-svn: 69299
- Strip off extra parens when looking for casts.
- Change the location info to point at the cast (instead of the
assignment).
For example, on
int *b;
#define a ((void*) b)
void f0() {
a = 10;
}
we now emit:
/tmp/t.c:4:3: error: assignment to cast is illegal, lvalue casts are not supported
a = 10;
^ ~
/tmp/t.c:2:12: note: instantiated from:
#define a ((void*) b)
~^~~~~~~~~~
instead of:
/tmp/t.c:4:5: error: expression is not assignable
a = 10;
~ ^
llvm-svn: 69114
This will simplify clang adoption, and is probably better "etiquette" (since gcc has always accepted this idiom without warning). Once we are over the adoption hurdle, we can turn this into an error.
llvm-svn: 68468
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
LHS type and the computation result type; this encodes information into
the AST which is otherwise non-obvious. Fix Sema to always come up with the
right answer for both of these types. Fix IRGen and the analyzer to
account for these changes. This fixes PR2601. The approach is inspired
by PR2601 comment 2.
Note that this changes real *= complex in CodeGen from a silent
miscompilation to an explicit error.
I'm not really sure that the analyzer changes are correct, or how to
test them... someone more familiar with the analyzer should check those
changes.
llvm-svn: 67889
uniqued representation that should both save some memory and make it
far easier to properly build canonical types for types involving
dependent nested-name-specifiers, e.g., "typename T::Nested::type".
This approach will greatly simplify the representation of
CXXScopeSpec. That'll be next.
llvm-svn: 67799
Treat @package the same as @public. The documentation for @package says it is analogous to private_extern for variables/functions. Fully implementing this requires some kind of linker support (so access is denied to code outside the classes executable image). I don't believe GCC fully implements this semantic. Will discuss with Fariborz offline.
llvm-svn: 67755
incompatibilities in assignments from other pointer incompatibilities.
Based off of the patch in PR3342. (This doesn't implement -Wno-pointer-sign,
but I don't know the driver code very well.)
llvm-svn: 67494
isObjCObjectPointerType to work with qualified types. Adjust test for
changes.
If the SemaExpr changes are wrong or break existing code, feel free to
delete the "ExprTy.addConst();" line and revert my changes to
test/Sema/block-literal.c.
llvm-svn: 67489
dot-syntax expression after earching the list of protocols
in the qualified-id, must keep searching the protocol list
of each of the protocols in the list.
llvm-svn: 67314
dependent qualified-ids such as
Fibonacci<N - 1>::value
where N is a template parameter. These references are "unresolved"
because the name is dependent and, therefore, cannot be resolved to a
declaration node (as we would do for a DeclRefExpr or
QualifiedDeclRefExpr). UnresolvedDeclRefExprs instantiate to
DeclRefExprs, QualifiedDeclRefExprs, etc.
Also, be a bit more careful about keeping only a single set of
specializations for a class template, and instantiating from the
definition of that template rather than a previous declaration. In
general, we need a better solution for this for all TagDecls, because
it's too easy to accidentally look at a declaration that isn't the
definition.
We can now process a simple Fibonacci computation described as a
template metaprogram.
llvm-svn: 67308
QualifiedNameType and QualifiedDeclRefExpr. We now keep track of the
exact nested-name-specifier spelling for a QualifiedDeclRefExpr, and
use that spelling when printing ASTs. This fixes PR3493.
llvm-svn: 67283
qualified name, e.g.,
foo::x
so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.
The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
::foo::bar::x
The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled).
The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).
Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.
llvm-svn: 67265
Type pointer. This allows our nested-name-specifiers to retain more
information about the actual spelling (e.g., which typedef did the
user name, or what exact template arguments were used in the
template-id?). It will also allow us to have dependent
nested-name-specifiers that don't map to any DeclContext.
llvm-svn: 67140
always, refactored the existing logic to tease apart the parser action
and the semantic analysis shared by the parser and template
instantiation.
llvm-svn: 66987
- C++ function casts, e.g., T(foo)
- sizeof(), alignof()
More importantly, this allows us to verify that we're performing
overload resolution during template instantiation, with
argument-dependent lookup and the "cached" results of name lookup from
the template definition.
llvm-svn: 66947
instantiation for binary operators. This change moves most of the
operator-overloading code from the parser action ActOnBinOp to a new,
parser-independent semantic checking routine CreateOverloadedBinOp.
Of particular importance is the fact that CreateOverloadedBinOp does
*not* perform any name lookup based on the current parsing context (it
doesn't take a Scope*), since it has to be usable during template
instantiation, when there is no scope information. Rather, it takes a
pre-computed set of functions that are visible from the context or via
argument-dependent lookup, and adds to that set any member operators
and built-in operator candidates. The set of functions is computed in
the parser action ActOnBinOp based on the current context (both
operator name lookup and argument-dependent lookup). Within a
template, the set computed by ActOnBinOp is saved within the
type-dependent AST node and is augmented with the results of
argument-dependent name lookup at instantiation time (see
TemplateExprInstantiator::VisitCXXOperatorCallExpr).
Sadly, we can't fully test this yet. I'll follow up with template
instantiation for sizeof so that the real fun can begin.
llvm-svn: 66923
This solution is much simpler (and doesn't add any per-scope overhead, which concerned Chris).
The only downside is the LabelMap is now declared in two places (Sema and BlockSemaInfo). My original fix tried to unify the LabelMap in "Scope" (which would support nested functions in general). In any event, this fixes the bug given the current language definition. If/when we decide to support GCC style nested functions, this will need to be tweaked.
llvm-svn: 66896
C++ templates. In particular, keep track of the overloaded operators
that are visible from the template definition, so that they can be
merged with those operators visible via argument-dependent lookup at
instantiation time.
Refactored the lookup routines for argument-dependent lookup and for
operator name lookup, so they can be called without immediately adding
the results to an overload set.
Instantiation of these expressions is completely wrong. I'll work on
that next.
llvm-svn: 66851
template. More importantly, start to sort out the issues regarding
complete types and nested-name-specifiers, especially the question of:
when do we instantiate a class template specialization that occurs to
the left of a '::' in a nested-name-specifier?
llvm-svn: 66662
A recent regression caused by http://llvm.org/viewvc/llvm-project?rev=65912&view=rev.
This commit isn't fully baked. Nevertheless, it should cause Xcode to compile again. Will speak with Fariborz offline.
llvm-svn: 66045
- Disallow casting 'super'. GCC allows this, however it doesn't make sense (super isn't an expression and the cast won't alter lookup/dispatch).
- Tighten up lookup when messaging 'self'.
llvm-svn: 66033
need them to evaluate redeclarations or call a function that hasn't
already been declared. We now keep a DenseMap of these locally-scoped
declarations so that they are not visible but can be quickly found,
e.g., when we're looking for previous declarations or before we go
ahead and implicitly declare a function that's being called. Fixes
PR3672.
llvm-svn: 65792
- Move the 'LabelMap' from Sema to Scope. To avoid layering problems, the second element is now a 'StmtTy *', which makes the LabelMap a bit more verbose to deal with.
- Add 'ActiveScope' to Sema. Managed by ActOnStartOfFunctionDef(), ObjCActOnStartOfMethodDef(), ActOnBlockStmtExpr().
- Changed ActOnLabelStmt(), ActOnGotoStmt(), ActOnAddrLabel(), and ActOnFinishFunctionBody() to use the new ActiveScope.
- Added FIXME to workaround in ActOnFinishFunctionBody() (for dealing with C++ nested functions).
llvm-svn: 65694
building nested member expressions. This location is used to determine the range
of the entire expression, and the expression itself already has its location
inherited from its Base.
This fixes <rdar://problem/6629829>.
llvm-svn: 65650
normal expression, and change Evaluate and IRGen to evaluate it like a
normal expression. This simplifies the code significantly, and fixes
PR3396.
llvm-svn: 65622
giving them rough classifications (normal types, never-canonical
types, always-dependent types, abstract type representations) and
making it far easier to make sure that we've hit all of the cases when
decoding types.
Switched some switch() statements on the type class over to using this
mechanism, and filtering out those things we don't care about. For
example, CodeGen should never see always-dependent or non-canonical
types, while debug info generation should never see always-dependent
types. More switch() statements on the type class need to be moved
over to using this approach, so that we'll get warnings when we add a
new type then fail to account for it somewhere in the compiler.
As part of this, some types have been renamed:
TypeOfExpr -> TypeOfExprType
FunctionTypeProto -> FunctionProtoType
FunctionTypeNoProto -> FunctionNoProtoType
There shouldn't be any functionality change...
llvm-svn: 65591