Recommit r373168, which was reverted by r373242. This actually exposed a
boringssl bug which has been fixed for more than one month.
For the following two cases, we currently suppress the symbols. This
patch emits them (compatible with GNU as).
* `test2_a = undef`: if `undef` is otherwise unused.
* `.hidden hidden`: if `hidden` is unused. This is the main point of the
patch, because omitting the symbol would cause a linker semantic
difference.
It causes a behavior change that is not compatible with GNU as:
.weakref foo1, bar1
When neither foo1 nor bar1 is used, we now emit bar1, which is arguably
more consistent.
Another change is that we will emit .TOC. for .TOC.@tocbase . For this
directive, suppressing .TOC. can be seen as a size optimization, but we
choose to drop it for simplicity and consistency.
For the following two cases, we currently suppress the symbols. This
patch emits them (compatible with GNU as).
* `test2_a = undef`: if `undef` is otherwise unused.
* `.hidden hidden`: if `hidden` is unused. This is the main point of the
patch, because omitting the symbol would cause a linker semantic
difference.
It causes a behavior change that is not compatible with GNU as:
.weakref foo1, bar1
When neither foo1 nor bar1 is used, we now emit bar1, which is arguably
more consistent.
Another change is that we will emit .TOC. for .TOC.@tocbase . For this
directive, suppressing .TOC. can be seen as a size optimization, but we
choose to drop it for simplicity and consistency.
llvm-svn: 373168
This change affects the non-linker script case (precisely, when the
`SECTIONS` command is not used). It deletes 3 alignments at PT_LOAD
boundaries for the default case: the size of a powerpc64 binary can be
decreased by at most 192kb. The technique can be ported to other
targets.
Let me demonstrate the idea with a maxPageSize=65536 example:
When assigning the address to the first output section of a new PT_LOAD,
if the end p_vaddr of the previous PT_LOAD is 0x10020, we advance to
the next multiple of maxPageSize: 0x20000. The new PT_LOAD will thus
have p_vaddr=0x20000. Because p_offset and p_vaddr are congruent modulo
maxPageSize, p_offset will be 0x20000, leaving a p_offset gap [0x10020,
0x20000) in the output.
Alternatively, if we advance to 0x20020, the new PT_LOAD will have
p_vaddr=0x20020. We can pick either 0x10020 or 0x20020 for p_offset!
Obviously 0x10020 is the choice because it leaves no gap. At runtime,
p_vaddr will be rounded down by pagesize (65536 if
pagesize=maxPageSize). This PT_LOAD will load additional initial
contents from p_offset ranges [0x10000,0x10020), which will also be
loaded by the previous PT_LOAD. This is fine if -z noseparate-code is in
effect or if we are not transiting between executable and non-executable
segments.
ld.bfd -z noseparate-code leverages this technique to keep output small.
This patch implements the technique in lld, which is mostly effective on
targets with large defaultMaxPageSize (AArch64/MIPS/PPC: 65536). The 3
removed alignments can save almost 3*65536 bytes.
Two places that rely on p_vaddr%pagesize = 0 have to be updated.
1) We used to round p_memsz(PT_GNU_RELRO) up to commonPageSize (defaults
to 4096 on all targets). Now p_vaddr%commonPageSize may be non-zero.
The updated formula takes account of that factor.
2) Our TP offsets formulae are only correct if p_vaddr%p_align = 0.
Fix them. See the updated comments in InputSection.cpp for details.
On targets that we enable the technique (only PPC64 now),
we can potentially make `p_vaddr(PT_TLS)%p_align(PT_TLS) != 0`
if `sh_addralign(.tdata) < sh_addralign(.tbss)`
This exposes many problems in ld.so implementations, especially the
offsets of dynamic TLS blocks. Known issues:
FreeBSD 13.0-CURRENT rtld-elf (i386/amd64/powerpc/arm64)
glibc (HEAD) i386 and x86_64 https://sourceware.org/bugzilla/show_bug.cgi?id=24606
musl<=1.1.22 on TLS Variant I architectures (aarch64/powerpc64/...)
So, force p_vaddr%p_align = 0 by rounding dot up to p_align(PT_TLS).
The technique will be enabled (with updated tests) for other targets in
subsequent patches.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64906
llvm-svn: 369343
Summary:
Our rule to create R_*_RELATIVE for absolute relocation types were
loose. D63121 made it stricter but it failed to create R_*_RELATIVE for
R_ARM_TARGET1 and R_PPC64_TOC. rLLD363236 worked around that by
reinstating the original behavior for ARM and PPC64.
This patch is an attempt to simplify the logic.
Note, in ld.bfd, R_ARM_TARGET2 --target2=abs also creates
R_ARM_RELATIVE. This seems a very uncommon scenario (moreover,
--target2=got-rel is the default), so I do not implement any logic
related to it.
Also, delete R_AARCH64_ABS32 from AArch64::getDynRel. We don't have
working ILP32 support yet. Allowing it would create an incorrect
R_AARCH64_RELATIVE.
For MIPS, the (if SymbolRel, then RelativeRel) code is to keep its
behavior unchanged.
Note, in ppc64-abs64-dyn.s, R_PPC64_TOC gets an incorrect addend because
computeAddend() doesn't compute the correct address. We seem to have the
wrong behavior for a long time. The important thing seems that a dynamic
relocation R_PPC64_TOC should not be created as the dynamic loader will
error R_PPC64_TOC is not supported.
Reviewers: atanasyan, grimar, peter.smith, ruiu, sfertile, espindola
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63383
llvm-svn: 363928