These pseudos are not supposed to be visible to user.
This patch reduced the auto-generated instruction matcher. For example,
the following words are removed from keyword list of LLVM BPF assembler.
- MCK__35_, // '#'
- MCK__COLON_, // ':'
- MCK__63_, // '?'
- MCK_ADJCALLSTACKDOWN, // 'ADJCALLSTACKDOWN'
- MCK_ADJCALLSTACKUP, // 'ADJCALLSTACKUP'
- MCK_PSEUDO, // 'PSEUDO'
- MCK_Select, // 'Select'
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 322535
As commented on the existing code:
// The Reg operand should be a virtual register, which is defined
// outside the current basic block. DAG combiner has done a pretty
// good job in removing truncating inside a single basic block.
However, when the Reg operand comes from bpf_load_[byte | half | word]
intrinsics, the generic optimizer doesn't understand their results are
zero extended, so these single basic block elimination opportunities were
missed.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 322534
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
Add support for 'objdump -print-imm-hex' for imm64, operand imm
and branch target. If user programs encode immediate values
as hex numbers, such an option will make it easy to correlate
asm insns with source code. This option also makes it easy
to correlate imm values with insn encoding.
There is one changed behavior in this patch. In old way, we
print the 64bit imm as u64:
O << (uint64_t)Op.getImm();
and the new way is:
O << formatImm(Op.getImm());
The formatImm is defined in llvm/MC/MCInstPrinter.h as
format_object<int64_t> formatImm(int64_t Value)
So the new way to print 64bit imm is i64 type.
If a 64bit value has the highest bit set, the old way
will print the value as a positive value and the
new way will print as a negative value. The new way
is consistent with x86_64.
For the code (see the test program):
...
if (a == 0xABCDABCDabcdabcdULL)
...
x86_64 objdump, with and without -print-imm-hex, looks like:
48 b8 cd ab cd ab cd ab cd ab movabsq $-6067004223159161907, %rax
48 b8 cd ab cd ab cd ab cd ab movabsq $-0x5432543254325433, %rax
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 321215
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
kernel verifier is becoming smarter and soon will support
direct and indirect function calls.
Remove obsolete error from BPF backend.
Make call to use PCRel_4 fixup.
'bpf to bpf' calls are distinguished from 'bpf to kernel' calls
by insn->src_reg == BPF_PSEUDO_CALL == 1 which is used as relocation
indicator similar to ld_imm64->src_reg == BPF_PSEUDO_MAP_FD == 1
The actual 'call' instruction remains the same for both
'bpf to kernel' and 'bpf to bpf' calls.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 318614
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Add hook in BPF backend so that llvm-objdump can print out
the jmp target with label names, e.g.,
...
if r1 != 2 goto 6 <LBB0_2>
...
goto 7 <LBB0_4>
...
LBB0_2:
...
LBB0_4:
...
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 318358
Summary:
Make it possible to feed runtime information back to tablegen to enable
profile-guided tablegen-eration, detection of untested tablegen definitions, etc.
Being a cross-compiler by nature, LLVM will potentially collect data for multiple
architectures (e.g. when running 'ninja check'). We therefore need a way for
TableGen to figure out what data applies to the backend it is generating at the
time. This patch achieves that by including the name of the 'def X : Target ...'
for the backend in the TargetRegistry.
Reviewers: qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, arsenm, jyknight, aditya_nandakumar, sdardis, nemanjai, ab, nhaehnle, t.p.northover, javed.absar, qcolombet, llvm-commits, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D39742
llvm-svn: 318352
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
In BPF backend, we try to optimize away redundant
trunc operations so that kernel verifier rewrite
remains valid. Previous implementation only works
for a single function.
This patch fixed the issue for multiple functions.
It clears internal map data structure before
performing optimization for each function.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 316469
We came across an llvm bug when compiling some testcases that 64-bit
immediates are silently truncated into 32-bit and then packed into
BPF_JMP | BPF_K encoding. This caused comparison with wrong value.
This bug looks to be introduced by r308080. The Select_Ri pattern is
supposed to be lowered into J*_Ri while the latter only support 32-bit
immediate encoding, therefore Select_Ri should have similar immediate
predicate check as what J*_Ri are doing.
Reported-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 315889
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
MCObjectStreamer owns its MCCodeEmitter -- this fixes the types to reflect that,
and allows us to remove the last instance of MCObjectStreamer's weird "holding
ownership via someone else's reference" trick.
llvm-svn: 315531
This adds debug tracing to the table-generated assembly instruction matcher,
enabled by the -debug-only=asm-matcher option.
The changes in the target AsmParsers are to add an MCInstrInfo reference under
a consistent name, so that we can use it from table-generated code. This was
already being used this way for targets that use deprecation warnings, but 5
targets did not have it, and Hexagon had it under a different name to the other
backends.
llvm-svn: 315445
MCObjectStreamer owns its MCAsmBackend -- this fixes the types to reflect that,
and allows us to remove another instance of MCObjectStreamer's weird "holding
ownership via someone else's reference" trick.
llvm-svn: 315410
functions.
This makes the ownership of the resulting MCObjectWriter clear, and allows us
to remove one instance of MCObjectStreamer's bizarre "holding ownership via
someone else's reference" trick.
llvm-svn: 315327
ELFObjectWriter's constructor.
Fixes the same ownership issue for ELF that r315245 did for MachO:
ELFObjectWriter takes ownership of its MCELFObjectTargetWriter, so we want to
pass this through to the constructor via a unique_ptr, rather than a raw ptr.
llvm-svn: 315254
This patch adds new insn, "reg = be16/be32/be64 reg",
for bswap to little endian for big-endian target (bpfeb).
It also adds new insn for negation "reg = -reg".
Currently, for source code, e.g.,
b = -a
LLVM still prefers to generate:
b = 0 - a
But "reg = -reg" format can be used in assembly code.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 314376
This patch adds instruction patterns for operations in BPF_ALU. After this,
assembler could recognize some 32-bit ALU statement. For example, those listed
int the unit test file.
Separate MOV patterns are unnecessary as MOV is ALU operation that could reuse
ALU encoding infrastructure, this patch removed those redundant patterns.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313961
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313960
Arithmetic and jump instructions, load and store instructions are sharing
the same 8-bit code field encoding,
A better instruction pattern implemention could be the following inheritance
relationships, and each layer only encoding those fields which start to
diverse from that layer. This avoids some redundant code.
InstBPF -> TYPE_ALU_JMP -> ALU/JMP
InstBPF -> TYPE_LD_ST -> Load/Store
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313959
Currently, eBPF backend is using some constant directly in instruction patterns,
This patch replace them with mnemonics and removed some unnecessary temparary
variables.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 313958
This partially revert previous fix in commit f5858045aa0b
("bpf: proper print imm64 expression in inst printer").
In that commit, the original suffix "ll" is removed from
LD_IMM64 asmstring. In the customer print method, the "ll"
suffix is printed if the rhs is an immediate. For example,
"r2 = 5ll" => "r2 = 5ll", and "r3 = varll" => "r3 = var".
This has an issue though for assembler. Since assembler
relies on asmstring to do pattern matching, it will not
be able to distiguish between "mov r2, 5" and
"ld_imm64 r2, 5" since both asmstring is "r2 = 5".
In such cases, the assembler uses 64bit load for all
"r = <val>" asm insts.
This patch adds back " ll" suffix for ld_imm64 with one
additional space for "#reg = #global_var" case.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 312978
Fixed an issue in printImm64Operand where if the value is
an expression, print out the expression properly. Currently,
it will print
r1 = <MCOperand Expr:(tx_port)>ll
With the patch, the printout will be
r1 = tx_port
Suggested-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 312833
-mcpu=# will support:
. generic: the default insn set
. v1: insn set version 1, the same as generic
. v2: insn set version 2, version 1 + additional jmp insns
. probe: the compiler will probe the underlying kernel to
decide proper version of insn set.
We did not not use -mcpu=native since llc/llvm will interpret -mcpu=native
as the underlying hardware architecture regardless of -march value.
Currently, only x86_64 supports -mcpu=probe. Other architecture will
silently revert to "generic".
Also added -mcpu=help to print available cpu parameters.
llvm will print out the information only if there are at least one
cpu and at least one feature. Add an unused dummy feature to
enable the printout.
Examples for usage:
$ llc -march=bpf -mcpu=v1 -filetype=asm t.ll
$ llc -march=bpf -mcpu=v2 -filetype=asm t.ll
$ llc -march=bpf -mcpu=generic -filetype=asm t.ll
$ llc -march=bpf -mcpu=probe -filetype=asm t.ll
$ llc -march=bpf -mcpu=v3 -filetype=asm t.ll
'v3' is not a recognized processor for this target (ignoring processor)
...
$ llc -march=bpf -mcpu=help -filetype=asm t.ll
Available CPUs for this target:
generic - Select the generic processor.
probe - Select the probe processor.
v1 - Select the v1 processor.
v2 - Select the v2 processor.
Available features for this target:
dummy - unused feature.
Use +feature to enable a feature, or -feature to disable it.
For example, llc -mcpu=mycpu -mattr=+feature1,-feature2
...
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 311522
The calling convention can be specified by the user in IR. Failing to support
a particular calling convention isn't a programming error, and so relying on
llvm_unreachable to catch and report an unsupported calling convention is not
appropriate.
Differential Revision: https://reviews.llvm.org/D36830
llvm-svn: 311435
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
Currently, for code like below,
===
inner_map = bpf_map_lookup_elem(outer_map, &port_key);
if (!inner_map) {
inner_map = &fallback_map;
}
===
the compiler generates (pseudo) code like the below:
===
I1: r1 = bpf_map_lookup_elem(outer_map, &port_key);
I2: r2 = 0
I3: if (r1 == r2)
I4: r6 = &fallback_map
I5: ...
===
During kernel verification process, After I1, r1 holds a state
map_ptr_or_null. If I3 condition is not taken
(path [I1, I2, I3, I5]), supposedly r1 should become map_ptr.
Unfortunately, kernel does not recognize this pattern
and r1 remains map_ptr_or_null at insn I5. This will cause
verificaiton failure later on.
Kernel, however, is able to recognize pattern "if (r1 == 0)"
properly and give a map_ptr state to r1 in the above case.
LLVM here generates suboptimal code which causes kernel verification
failure. This patch fixes the issue by changing BPF insn pattern
matching and lowering to generate proper codes if the righthand
parameter of the above condition is a constant. A test case
is also added.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 308080
The issue is not if the value is pcrel. It is whether we have a
relocation or not.
If we have a relocation, the static linker will select the upper
bits. If we don't have a relocation, we have to do it.
llvm-svn: 307730
For networking-type bpf program, it often needs to access
packet data. A context data structure is provided to the bpf
programs with two fields:
u32 data;
u32 data_end;
User can access these two fields with ctx->data and ctx->data_end.
During program verification process, the kernel verifier modifies
the bpf program with loading of actual pointer value from kernel
data structure.
r = ctx->data ===> r = actual data start ptr
r = ctx->data_end ===> r = actual data end ptr
A typical program accessing ctx->data like
char *data_ptr = (char *)(long)ctx->data
will result in a 32-bit load followed by a zero extension.
Such an operation is combined into a single LDW in DAG combiner
as bpf LDW does zero extension automatically.
In cases like the below (which can be a result of global value numbering
and partial redundancy elimination before insn selection):
B1:
u32 a = load-32-bit &ctx->data
u64 pa = zext a
...
B2:
u32 b = load-32-bit &ctx->data
u64 pb = zext b
...
B3:
u32 m = PHI(a, b)
u64 pm = zext m
In B3, "pm = zext m" cannot be removed, which although is legal
from compiler perspective, will generate incorrect code after
kernel verification.
This patch recognizes this pattern and traces through PHI node
to see whether the operand of "zext m" is defined with LDWs or not.
If it is, the "zext m" itself can be removed.
The patch also recognizes the pattern where the load and use of
the load value not in the same basic block, where truncate operation
may be removed as well.
The patch handles 1-byte, 2-byte and 4-byte truncation.
Two test cases are added to verify the transformation happens properly
for the above code pattern.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 306685
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177
Davide Italiano reported the following issue if llvm
is compiled with gcc -Wstrict-aliasing -Werror:
.....
lib/Target/BPF/CMakeFiles/LLVMBPFCodeGen.dir/BPFISelDAGToDAG.cpp.o
../lib/Target/BPF/BPFISelDAGToDAG.cpp: In member function ‘virtual
void {anonymous}::BPFDAGToDAGISel::PreprocessISelDAG()’:
../lib/Target/BPF/BPFISelDAGToDAG.cpp:264:26: warning: dereferencing
type-punned pointer will break strict-aliasing rules
[-Wstrict-aliasing]
val = *(uint16_t *)new_val;
.....
The error is caused by my previous commit (revision 305560).
This patch fixed the issue by introducing an union to avoid
type casting.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305608