Summary:
If the first parameter of the function is the ImplicitParamDecl, codegen
automatically marks it as an implicit argument with `this` or `self`
pointer. Added internal kind of the ImplicitParamDecl to separate
'this', 'self', 'vtt' and other implicit parameters from other kind of
parameters.
Reviewers: rjmccall, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33735
llvm-svn: 305075
Amongst other, this will help LTO to correctly handle/honor files
compiled with O0, helping debugging failures.
It also seems in line with how we handle other options, like how
-fnoinline adds the appropriate attribute as well.
Differential Revision: https://reviews.llvm.org/D28404
llvm-svn: 304127
The functions creating LValues propagated information about alignment
source. Extend the propagated data to also include information about
possible unrestricted aliasing. A new class LValueBaseInfo will
contain both AlignmentSource and MayAlias info.
This patch should not introduce any functional changes.
Differential Revision: https://reviews.llvm.org/D33284
llvm-svn: 303358
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential revision: https://reviews.llvm.org/D32550
llvm-svn: 302572
[OpenMP] Initial implementation of code generation for pragma 'distribute parallel for' on host
https://reviews.llvm.org/D29508
This patch makes the following additions:
It abstracts away loop bound generation code from procedures associated with pragma 'for' and loops in general, in such a way that the same procedures can be used for 'distribute parallel for' without the need for a full re-implementation.
It implements code generation for 'distribute parallel for' and adds regression tests. It includes tests for clauses.
It is important to notice that most of the clauses are implemented as part of existing procedures. For instance, firstprivate is already implemented for 'distribute' and 'for' as separate pragmas. As the implementation of 'distribute parallel for' is based on the same procedures, then we automatically obtain implementation for such clauses without the need to add new code. However, this requires regression tests that verify correctness of produced code.
llvm-svn: 301340
https://reviews.llvm.org/D29508
This patch makes the following additions:
1. It abstracts away loop bound generation code from procedures associated with pragma 'for' and loops in general, in such a way that the same procedures can be used for 'distribute parallel for' without the need for a full re-implementation.
2. It implements code generation for 'distribute parallel for' and adds regression tests. It includes tests for clauses.
It is important to notice that most of the clauses are implemented as part of existing procedures. For instance, firstprivate is already implemented for 'distribute' and 'for' as separate pragmas. As the implementation of 'distribute parallel for' is based on the same procedures, then we automatically obtain implementation for such clauses without the need to add new code. However, this requires regression tests that verify correctness of produced code.
Looking forward to comments.
llvm-svn: 301223
With tasks, the cancel may happen in another task. This has a different
region info which means that we can't find it here.
Differential Revision: https://reviews.llvm.org/D30091
llvm-svn: 295474
This resolves a deadlock with the cancel directive when there is no explicit
cancellation point. In that case, the implicit barrier acts as cancellation
point. After removing the barrier after cancel, the now unmatched barrier for
the explicit cancellation point has to go as well.
This has probably worked before rL255992: With the calls for the explicit
barrier, it was sure that all threads passed a barrier before exiting.
Reported by Simon Convent and Joachim Protze!
Differential Revision: https://reviews.llvm.org/D30088
llvm-svn: 295473
This patch implements codegen for the reduction clause on
any parallel construct for elementary data types. An efficient
implementation requires hierarchical reduction within a
warp and a threadblock. It is complicated by the fact that
variables declared in the stack of a CUDA thread cannot be
shared with other threads.
The patch creates a struct to hold reduction variables and
a number of helper functions. The OpenMP runtime on the GPU
implements reduction algorithms that uses these helper
functions to perform reductions within a team. Variables are
shared between CUDA threads using shuffle intrinsics.
An implementation of reductions on the NVPTX device is
substantially different to that of CPUs. However, this patch
is written so that there are minimal changes to the rest of
OpenMP codegen.
The implemented design allows the compiler and runtime to be
decoupled, i.e., the runtime does not need to know of the
reduction operation(s), the type of the reduction variable(s),
or the number of reductions. The design also allows reuse of
host codegen, with appropriate specialization for the NVPTX
device.
While the patch does introduce a number of abstractions, the
expected use case calls for inlining of the GPU OpenMP runtime.
After inlining and optimizations in LLVM, these abstractions
are unwound and performance of OpenMP reductions is comparable
to CUDA-canonical code.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29758
llvm-svn: 295333
This patch implements codegen for the reduction clause on
any parallel construct for elementary data types. An efficient
implementation requires hierarchical reduction within a
warp and a threadblock. It is complicated by the fact that
variables declared in the stack of a CUDA thread cannot be
shared with other threads.
The patch creates a struct to hold reduction variables and
a number of helper functions. The OpenMP runtime on the GPU
implements reduction algorithms that uses these helper
functions to perform reductions within a team. Variables are
shared between CUDA threads using shuffle intrinsics.
An implementation of reductions on the NVPTX device is
substantially different to that of CPUs. However, this patch
is written so that there are minimal changes to the rest of
OpenMP codegen.
The implemented design allows the compiler and runtime to be
decoupled, i.e., the runtime does not need to know of the
reduction operation(s), the type of the reduction variable(s),
or the number of reductions. The design also allows reuse of
host codegen, with appropriate specialization for the NVPTX
device.
While the patch does introduce a number of abstractions, the
expected use case calls for inlining of the GPU OpenMP runtime.
After inlining and optimizations in LLVM, these abstractions
are unwound and performance of OpenMP reductions is comparable
to CUDA-canonical code.
Patch by Tian Jin in collaboration with Arpith Jacob
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29758
llvm-svn: 295319
This patch adds support for codegen of 'target teams' on the host.
This combined directive has two captured statements, one for the
'teams' region, and the other for the 'parallel'.
This target teams region is offloaded using the __tgt_target_teams()
call. The patch sets the number of teams as an argument to
this call.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29084
llvm-svn: 293005
This patch adds support for codegen of 'target teams' on the host.
This combined directive has two captured statements, one for the
'teams' region, and the other for the 'parallel'.
This target teams region is offloaded using the __tgt_target_teams()
call. The patch sets the number of teams as an argument to
this call.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29084
llvm-svn: 293001
The num_threads-clause on the combined directive applies to the
'parallel' region of this construct. We modify the NumThreadsClause
class to capture the clause expression within the 'target' region.
The offload runtime call for 'target parallel' is changed to
__tgt_target_teams() with 1 team and the number of threads set by
this clause or a default if none.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D29082
llvm-svn: 292997
This patch adds support for codegen of 'target parallel' on the host.
It is also the first combined directive that requires two or more
captured statements. Support for this functionality is included in
the patch.
A combined directive such as 'target parallel' has two captured
statements, one for the 'target' and the other for the 'parallel'
region. Two captured statements are required because each has
different implicit parameters (see SemaOpenMP.cpp). For example,
the 'parallel' has 'global_tid' and 'bound_tid' while the 'target'
does not. The patch adds support for handling multiple captured
statements based on the combined directive.
When codegen'ing the 'target parallel' directive, the 'target'
outlined function is created using the outer captured statement
and the 'parallel' outlined function is created using the inner
captured statement.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D28753
llvm-svn: 292419
This patch adds support for codegen of 'target parallel' on the host.
It is also the first combined directive that requires two or more
captured statements. Support for this functionality is included in
the patch.
A combined directive such as 'target parallel' has two captured
statements, one for the 'target' and the other for the 'parallel'
region. Two captured statements are required because each has
different implicit parameters (see SemaOpenMP.cpp). For example,
the 'parallel' has 'global_tid' and 'bound_tid' while the 'target'
does not. The patch adds support for handling multiple captured
statements based on the combined directive.
When codegen'ing the 'target parallel' directive, the 'target'
outlined function is created using the outer captured statement
and the 'parallel' outlined function is created using the inner
captured statement.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D28753
llvm-svn: 292374
This patch refactors code that calls codegen for target regions. Currently
the codebase only supports the 'target' directive. The patch pulls out
common target processing code into a static function that can be called
by codegen for any target directive.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D28752
llvm-svn: 292134
Summary:
This patch introduces support for the execution of parallel constructs in a target
region on the NVPTX device. Parallel regions must be in the lexical scope of the
target directive.
The master thread in the master warp signals parallel work for worker threads in worker
warps on encountering a parallel region.
Note: The patch does not yet support capture of arguments in a parallel region so
the test cases are simple.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D28145
llvm-svn: 291565
Summary:
This patch adds two fields to the offload entry descriptor. One field is meant to signal Ctors/Dtors and `link` global variables, and the other is reserved for runtime library use.
Currently, these fields are only filled with zeros in the current code generation, but that will change when `declare target` is added.
The reason, we are adding these fields now is to make the code generation consistent with the runtime library proposal under review in https://reviews.llvm.org/D14031.
Reviewers: ABataev, hfinkel, carlo.bertolli, kkwli0, arpith-jacob, Hahnfeld
Subscribers: cfe-commits, caomhin, jholewinski
Differential Revision: https://reviews.llvm.org/D28298
llvm-svn: 291124
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
The change in D26502 splits ReaderWriter.h, which contains the APIs
into both the BitReader and BitWriter libraries, into BitcodeReader.h
and BitcodeWriter.h.
Change clang uses to the appropriate split header(s).
llvm-svn: 286567
It seems the compiler was getting confused by the in-class initializers
in local struct MapInfo, so moving those to a default constructor
instead.
llvm-svn: 277256
Summary: This patch adds support for the is_device_ptr clause. It expands SEMA to use the mappable expression logic that can only be tested with code generation in place and check conflicts with other data sharing related clauses using the mappable expressions infrastructure.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22788
llvm-svn: 276978
Summary: This patch adds support for the use_device_ptr clause. It includes changes in SEMA that could not be tested without codegen, namely, the use of the first private logic and mappable expressions support.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22691
llvm-svn: 276977
Summary: This patch add support to map pointers through references in class members. Although a reference does not have storage that a user can access, it still has to be mapped in order to get the deep copy right and the dereferencing code work properly.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22787
llvm-svn: 276934
Summary:
This patch fixes a bug in the map of array sections whose base is a reference to a pointer. The existing mapping support was not prepared to deal with it, causing the compiler to crash.
Mapping a reference to a pointer enjoys the same characteristics of a regular pointer, i.e., it is passed by value. Therefore, the reference has to be materialized in the target region.
Reviewers: hfinkel, carlo.bertolli, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22690
llvm-svn: 276933
Summary:
This patch fixes an issue detected when firstprivate variables are passed to an OpenMP outlined function vararg list. Currently they are not compatible with what the runtime library expects causing malfunction in some targets.
This patch fixes the issue by moving the casting logic already in place for offloading to the common code that creates the outline function and arguments and updates the regression tests accordingly.
Reviewers: hfinkel, arpith-jacob, carlo.bertolli, kkwli0, ABataev
Subscribers: cfe-commits, caomhin
Differential Revision: http://reviews.llvm.org/D21150
llvm-svn: 272900