An io-unit that is an internal-file-variable is syntactically identical
to a file-unit-number expression that is a variable reference. An
ambiguous unit is initially parsed as an internal-file-variable. If
semantic analysis determines that the unit is not of character type,
it is rewritten as an internal-file-variable. This modification must
retain source coordinate information.
Differential revision: https://reviews.llvm.org/D91375
Avoid a spurious error message about a dummy procedure reference
in a specification expression by restructuring the handling of
use-associated and host-associated symbols.
Updated to fix a circular dependence between shared library
binaries that was introduced by the original patch.
Differential revision: https://reviews.llvm.org/D91286
F18 clause 5.3.3 explicitly allows labels on program unit END statements.
Label resolution code accounts for this for singleton program units,
but incorrectly generates an error for host subprograms with internal
subprograms.
subroutine s(n)
call s1(n)
if (n == 0) goto 88 ! incorrect error
print*, 's'
contains
subroutine s1(n)
if (n == 0) goto 77 ! ok
print*, 's1'
77 end subroutine s1
88 end
Label resolution code makes a sequential pass over an entire file to
collect label information for all subprograms, followed by a pass through
that information for semantics checks. The problem is that END statements
may be separated from prior subprogram code by internal subprogram
definitions, so an END label can be associated with the wrong subprogram.
There are several ways to fix this. Labels are always local to a
subprogram. So the two separate passes over the entire file could probably
instead be interleaved to perform analysis on a subprogram as soon as the
end of the subprogram is reached, using a small stack. The stack structure
would account for the "split" code case. This might work.
It is possible that there is some not otherwise apparent advantage to
the current full-file pass design. The parse tree has productions that
provide access to a subprogram END statement "in advance". An alternative
is to access this information to solve the problem. This PR implements
this latter option.
Differential revision: https://reviews.llvm.org/D91217
Implicitly typed references to external functions are applying
the IMPLICIT typing rules of the global scope in which their
symbols were created, not the IMPLICIT typing rules in force in
the scope from which they were referenced.
Differential revision: https://reviews.llvm.org/D91214
The initial approach was to go with changing parser nodes from `std::list<parser::Name>` to `OmpObjectList`, but that might have lead to illegal programs.
Resolving the symbols inside `OmpAttributeVisitor`.
Fix a couple of `XFAIL` tests.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D90538
Add the semantic checks for the OpenMP 4.5 - 2.15.4.1 copyin clause.
Resolve OpenMPThreadprivate directive since the list of items specified
in copyin clause should be threadprivate.
Test cases : omp-copyin01.f90, omp-copyin02.f90, omp-copyin03.f90,
omp-copyin04.f90, omp-copyin05.f90
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D89385
`OmpStructureChecker` has too much boilerplate code in source file.
It was not easy to figure out the seperation of clauses inside 'OmpClause' and
the ones which had a seperate node in parse-tree.h.
This patch:
1. Removes the boilerplate by defining a few macros.
2. Makes seperation between constructs, directives and clauses(sub classes are seperated).
3. Macros could have been shared between OMP and OACC, template specilizations might have
been costly hence used macros.
Follows the same strategy used for `AccStructureChecker`.
Next patch in series to simplify OmpStructureChecker would try to simplify
boilerplates inside the functions and either create abstractions or use if
something is available inside check-directive-structure.h
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D90324
Ensure that character length is properly calculated for
actual arguments to intrinsics, and that source provenance
information is available when expression analysis calls
folding in cases where the length is invalid.
Differential revision: https://reviews.llvm.org/D90636
When the bounds of an implied DO loop in an array constructor are
constant, the index variable of that loop is considered a constant
expression and can be used as such in the items in the value list
of the implied DO loop. Since the KIND type parameter values of items
in the value list can depend on the various values taken by such an
index, it is not possible to represent those values with a single
typed expression. So implement such loops by taking multiple passes
over the parse tree of the implied DO loop instead.
Differential revision: https://reviews.llvm.org/D90494
Subclause 10.1.12 in F'2018 prohibits forward references from
a specification expression to an object declared later in the
same specification part. Catch this error better and emit
specific error messages about the violation.
Differential revision: https://reviews.llvm.org/D90492
Fortran's FINAL feature is sensitive to object rank.
When an object's rank excludes it from finalization, but
the type has FINAL subroutines for other ranks, emit
a warning. This should be especially helpful in the
case of a scalar FINAL subroutine not being declared
(IMPURE) ELEMENTAL.
Differential revision: https://reviews.llvm.org/D90495
READ(CVAR)[,item-list] with a character variable CVAR
could be parsed as an unformatted READ from an internal
unit or as a formatted READ from the default external unit
with a needlessly parenthesized variable format. We parse
it as the former, but Fortran doesn't have unformatted
internal I/O.
Differential revision: https://reviews.llvm.org/D90493
Some changes introduced in https://reviews.llvm.org/D88655 cause compiler
warnings. Since in Flang warnings are treated as errors (`-Werror` is on by
default), these are in practice compiler errors (verified with clang-10 and
clang-11, gcc-10). This patches fixes these warning/failures.
Warning/error 1:
```
llvm-project/flang/lib/Semantics/check-omp-structure.cpp:107:3: error:
unannotated fall-through between switch labels [-Werror,-Wimplicit-fallthrough]
```
Warning/error 2:
```
llvm-project/flang/lib/Semantics/check-directive-structure.h:39:9: error: field
'currentDirective_' will be initialized after field 'upperCaseDirName_'
[-Werror,-Wreorder-ctor]
```
Failing buildbot:
* http://lab.llvm.org:8011/#/builders/33/builds/386
From below mentioned standard references
OpenACC 3.0 Standards document
840 • A program may not branch into or out of an OpenACC parallel construct
OpenMP 5.0 Standards document
A program that branches into or out of a parallel region is non-conforming.
This patch
Resolves the issue of exit out of a parallel region, other branching out issues like goto statements are not handled with this patch.
Moves code from D87906 to be reused by other OpenMP/OpenACC to check-directive-structure.h.
Adds support in OpenMP parallel construct and a test case to verify.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D88655
Enter data can have the copyin clause and exit data can have the copyout clause.
Both clauses support modifier with other directive but for these two directives no modifier
are supported. This semantic check enforce this rule.
Reviewed By: kiranktp
Differential Revision: https://reviews.llvm.org/D90280
2 Bug fixes:
- Do not resolve procedure as intrinsic if they appeared in an
EXTERNAL attribute statement (one path was not considering this flag)
- Emit an error if a procedure resolved to be an intrinsic function
(resp. subroutine) is used as a subroutine (resp. function).
Lowering was attempted while the evaluate::Expression for the
call was missing without any errors.
1 behavior change:
- Do not implicitly resolve subroutines (resp. functions) as intrinsics
because their name is the name of an intrinsic function (resp.
subroutine). Add justification in documentation.
Reviewed By: klausler, tskeith
Differential Revision: https://reviews.llvm.org/D90049
I added a test to verify that the associated symbol did not have errors before
doing the anaylsis of a call to a component ref along with a test that
triggers the original problem.
Differential Revision: https://reviews.llvm.org/D90074
wait and atomic directives are represented by OpenACCWaitConstruct, OpenACCAtmicConstruct in the parser. Those contrsuct were
not taken into account in the semantic check so far.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88628
When processing declarations in resolve-names.cpp, we were returning a
symbol that had SubprogramName details to PushSubprogramScope(), which
expects a symbol with Subprogram details.
I adjusted the code and added a test.
Differential Revision: https://reviews.llvm.org/D89829
Check INTENT(OUT)/INTENT(INOUT) constraints for actual argument
of intrinsic procedure calls.
- Adding a common::Intent field to the IntrinsicDummyArgument
in the intrinsic table.
- Propagating it to the DummyDataObject intent field so that it can
later be used in CheckExplicitDataArg semantic checks.
- Add related tests.
- Fix regression (C846 false error), C846 INTENT(OUT) rule does
not apply to intrinsic call. Propagate the information that we
are in an intrinsic call up to CheckExplicitDataArg (that is
doing this check). Still enforce C846 on intrinsics other than MOVE_ALLOC (for which
allocatable coarrays are explicitly allowed) since it's not clear it is allowed in all
intrinsics and allowing this would lead to runtime penalties in the intrinsic runtime.
Differential Revision: https://reviews.llvm.org/D89473
From OpenACC 3.0 Standards document
840 • A program may not branch into or out of an OpenACC parallel construct.
Exits are allowed provided it does not cause an exit outside the parallel region.
Test case exits out of the inner do loop, but it is still inside the parallel region.
Patch tries to extract labels from block attached to a construct,
If the exit is to a label not in the collected list then flags an error.
Reviewed By: tskeith
Differential Revision: https://reviews.llvm.org/D87906
We had neglected to check for name mismatches for procedure definitions that
appear in interfaces.
I also changed label11.f90 to an error test since I think they're better than
"FileCheck" tests.
Differential Revision: https://reviews.llvm.org/D89611
Calling "ASSOCATED(NULL()) was causing an internal check of the compiler to
fail.
I fixed this by changing the entry for "ASSOCIATED" in the intrinsics table to
accept "AnyPointer" which contains a new "KindCode" of "pointerType". I also
changed the function "FromActual()" to return a typeless intrinsic when called
on a pointer, which duplicates its behavior for BOZ literals. This required
changing the analysis of procedure arguments. While testing processing for
procedure arguments, I found another bad call to `CHECK()` which I fixed.
I made several other changes:
-- I implemented constant folding for ASSOCIATED().
-- I fixed handling of NULL() in relational operations.
-- I implemented semantic analysis for ASSOCIATED().
-- I noticed that the semantics for ASSOCIATED() are similar to those for
pointer assignment. So I extracted the code that pointer assignment uses
for procedure pointer compatibility to a place where it could be used by
the semantic analysis for ASSOCIATED().
-- I couldn't figure out how to make the general semantic analysis for
procedure arguments work with ASSOCIATED()'s second argument, which can
be either a pointer or a target. So I stopped using normal semantic
analysis for arguments for ASSOCIATED().
-- I added tests for all of this.
Differential Revision: https://reviews.llvm.org/D88313
The OpenMP 5.0 standard restricts nowait clause to appear only once on sections
directive.
See OpenMP 5.0
- 2.8.1
- point 3 in restrictions.
Added a test with fix.
Reviewed By: DavidTruby
Differential Revision: https://reviews.llvm.org/D88556
`OmpStructureChecker` is supposed to work only with `parser::OmpClause`
after tablegen changes for OpenMP and OpenACC were introduced.
Hence `OmpMemoryOrderClause`, `OmpAtomicMemoryOrderClause` and similar ones were failing
to catch semantic errors, inspite of having code for semantic checks.
This patch tries to change parser for `OmpMemoryOrderClause` and similar dependent ones
and use `OmpClauseList` which resides/comes from common tablegen for OpenMP/OpenACC eventually using `parser::OmpClause`.
This patch also tries to :
1. Change `OmpCriticalDirective` in `openmp-parsers.cpp` to support `OmpClauseList`.
2. Check-flang regresses when changes were introduced due to missing semantic checks in OmpCritical, patch implements them at the minimal level to pass the regression.
3. Change tablegen to support Hint clause.
4. Adds missing source locations `CharBlock Source` in each atomic construct.
5. Remove dead code realted to `memory-order-clauses` after moving to `OmpClauseList`.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88965
The semantics pass currently checks for several constraints
that apply to the use of whole assumed-size arrays in various
contexts, but C1002 wasn't really implemented. This patch
implements C1002 by disallowing the use of whole assumed-size
arrays in expressions and variables unless specifically
allowed by the context. This centralizes the error reporting,
which has been improved with a link to the array's declaration.
Differential revision: https://reviews.llvm.org/D88691
CHARACTER length expressions were not always being
captured or computed as part of procedure "characteristics",
leading to test failures due to an inability to compute
memory size expressions accurately.
Differential revision: https://reviews.llvm.org/D88689
Represent FINAL subroutines in the symbol table entries of
derived types. Enforce constraints. Update tests that have
inadvertent violations or modified messages. Added a test.
The specific procedure distinguishability checking code for generics
was used to enforce distinguishability of FINAL procedures.
(Also cleaned up some confusion and redundancy noticed in the
type compatibility infrastructure while digging into that area.)
Differential revision: https://reviews.llvm.org/D88613
The Microsoft compiler seems to have difficulties to decide between a const/non-const method of a captured object context in a closure. The error message is:
```
symbol.cpp(261): error C2668: 'Fortran::semantics::Symbol::detailsIf': ambiguous call to overloaded function
symbol.h(535): note: could be 'const D *Fortran::semantics::Symbol::detailsIf<Fortran::semantics::DerivedTypeDetails>(void) const'
symbol.h(534): note: or 'D *Fortran::semantics::Symbol::detailsIf<Fortran::semantics::DerivedTypeDetails>(void)'
symbol.cpp(261): note: while trying to match the argument list '()'
```
Explicitly using the this-pointer resolves this problem.
This patch is part of the series to make flang compilable with MS Visual Studio <http://lists.llvm.org/pipermail/flang-dev/2020-July/000448.html>.
Reviewed By: DavidTruby
Differential Revision: https://reviews.llvm.org/D88052
A type name in an IMPLICIT declaration that was later used in a PARAMETER
statement caused problems because the default symbol scope had not yet been
initialized. I avoided dereferencing in the situation where the default scope
was uninitialized and added a test that triggers the problem.
Also, once I corrected the bad dereference, the compiler was putting out
misleading error messages. The underlying error us due to violating section
7.5.10, paragraph 4, which states:
A structure constructor shall not appear before the referenced type is
defined.
I fixed this by testing to see if a type that is used in a structure
constructor is forward referenced.
Differential Revision: https://reviews.llvm.org/D87535
Change the analyzed form of type-bound assignment to match that of call
statements. Resolve the binding name to a specific subprogram when
possible by using `GetBindingResolution`. Otherwise leave it as a
type-bound procedure call.
Differential Revision: https://reviews.llvm.org/D87541
A type name in an IMPLICIT declaration that was later used in a PARAMETER
statement caused problems because the default symbol scope had not yet been
initialized. I avoided dereferencing in the situation where the default scope
was uninitialized and added a test that triggers the problem.
Differential Revision: https://reviews.llvm.org/D87535
Define Fortran::Semantics::Scope::GetName in the header so it is available
to Fortran::Evaluate::Tool::AttachDeclaration without a circular dependency
introduced in 82edd42.
Reviewed By: tskeith
Differential Revision: https://reviews.llvm.org/D87505
Change how generic operators and assignments are checked for
distinguishable procedures. Because of how they are invoked, available
type-bound generics and normal generics all have to be considered
together. This is different from how generic names are checked.
Move common part of checking into DistinguishabilityHelper so that it
can be used in both cases after the appropriate procedures have been
added.
Cache result of Procedure::Characterize(Symbol) in a map in
CheckHelper so that we don't have to worry about passing the
characterized Procedures around or the cost of recomputing them.
Add MakeOpName() to construct names for defined operators and assignment
for using in error messages. This eliminates the need for different
messages in those cases.
When the procedures for a defined operator or assignment are undistinguishable,
include the type name in the error message, otherwise it may be ambiguous.
Add missing check that procedures for defined operators are functions
and that their dummy arguments are INTENT(IN) or VALUE.
Differential Revision: https://reviews.llvm.org/D87341
These are owned by an instance of a new class AllCookedSources.
This removes the need for a Scope to own a string containing
a module's cooked source stream, and will enable errors to be
emitted when parsing module files in the future.
Differential Revision: https://reviews.llvm.org/D86891
The DumpSymbolsSources() routine ordered its output by the addresses
of the names of the symbols, and was susceptible to variation across
environments. Fixed by using a multimap using the values of the names.
Differential Revision: https://reviews.llvm.org/D87035
Don't use just 128-bit integer as the type for integer
CASE statement constants. Use the actual type of the
literal constants that appeared.
Differential Review: https://reviews.llvm.org/D86875
Conformance checking of the shapes of the operands of
array expressions can't, of course, always be done at
compilation time; but when the shapes are known and
nonconformable, we should catch the errors that we can.
Differential Revision: https://reviews.llvm.org/D86887
Change the expression representation TypeParamInquiry from being
a class that's templatized on the integer KIND of its result into
a monomorphic representation that results in a SubscriptInteger
that can then be converted.
This is a minor simplification, but it's worth doing because
it is believed to also be a work-around for bugs in the MSVC
compiler with overload resolution that affect the expression
traversal framework.
Differential Revision: https://reviews.llvm.org/D86551
Compilation of the following program currently generates a warning message:
i = 1
if (i .eq. 0) then
write(6, 200) i
200 format (I8)
end if
write(6, 200) i
end
x.f90:6:9: Label '200' is not in scope
write(6, 200) i
^^^^^^^^^^^^^^^
Whereas branch targets must conform to the Clause 11.1.2.1 program
requirement "Transfer of control to the interior of a block from
outside the block is prohibited, ...", this doesn't apply to format
statement references.
When an error is associated with a symbol, it was marked with a flag
from Symbol::Flag. The problem with that is that you need a mutable
symbol to do that. Instead, store the set of error symbols in the
SemanticsContext. This allows for some const_casts to be eliminated.
Also, improve the internal error that occurs if SetError is called
but no fatal error has been reported.
Differential Revision: https://reviews.llvm.org/D86740
The tile clause in OpenACC 3.0 imposes some restriction. Element in the tile size list are either * or a
constant positive integer expression. If there are n tile sizes in the list, the loop construct must be immediately
followed by n tightly-nested loops.
This patch implement these restrictions and add some tests.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D86655
A number of I/O syntax rules involve variables that will be written to,
and must therefore be definable. This includes internal file variables,
IOSTAT= and IOMSG= specifiers, most INQUIRE statement specifiers, a few
other specifiers, and input variables. This patch checks for
these violations, and implements several additional I/O TODO constraint
checks.
Differential Revision: https://reviews.llvm.org/D86557