Otherwise, lots of these tests fail with a CHECK error similar to:
==12345==AddressSanitizer CHECK failed: compiler-rt/lib/asan/asan_posix.cpp:120 "((0)) == ((pthread_key_create(&tsd_key, destructor)))" (0x0, 0x4e)
This is because the default pthread stubs in FreeBSD's libc always
return failures (such as ENOSYS for pthread_key_create) in case the
pthread library is not linked in.
Reviewed By: arichardson
Differential Revision: https://reviews.llvm.org/D85082
Have the front-end use the `nounwind` attribute on atomic libcalls.
This prevents us from seeing `invoke __atomic_load` in MSAN, which
is problematic as it has no successor for instrumentation to be added.
Unmapping and remapping is dangerous since another thread could touch
the shadow memory while it is unmapped. But there is really no need to
unmap anyway, since mmap(MAP_FIXED) will happily clobber the existing
mapping with zeroes. This is thread-safe since the mmap() is done under
the same kernel lock as page faults are done.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D85947
Add interceptors for `dispatch_async_and_wait[_f]()` which was added in
macOS 10.14. This pair of functions is similar to `dispatch_sync()`,
but does not force a context switch of the queue onto the caller thread
when the queue is active (and hence is more efficient). For TSan, we
can apply the same semantics as for `dispatch_sync()`.
From the header docs:
> Differences with dispatch_sync()
>
> When the runtime has brought up a thread to invoke the asynchronous
> workitems already submitted to the specified queue, that servicing
> thread will also be used to execute synchronous work submitted to the
> queue with dispatch_async_and_wait().
>
> However, if the runtime has not brought up a thread to service the
> specified queue (because it has no workitems enqueued, or only
> synchronous workitems), then dispatch_async_and_wait() will invoke the
> workitem on the calling thread, similar to the behaviour of functions
> in the dispatch_sync family.
Additional context:
> The guidance is to use `dispatch_async_and_wait()` instead of
> `dispatch_sync()` when it is necessary to mix async and sync calls on
> the same queue. `dispatch_async_and_wait()` does not guarantee
> execution on the caller thread which allows to reduce context switches
> when the target queue is active.
> https://gist.github.com/tclementdev/6af616354912b0347cdf6db159c37057
rdar://35757961
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D85854
base and nptr_label were swapped, which meant we were passing nptr's
shadow as the base to the operation. Usually, the shadow is 0, which
causes strtoull to guess the correct base from the string prefix (e.g.,
0x means base-16 and 0 means base-8), hiding this bug. Adjust the test
case to expose the bug.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D85935
Similarly as for pointers, even for integers a == b is usually false.
GCC also uses this heuristic.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D85781
When building on `sparc64-unknown-linux-gnu`, I found that a large number
of `SanitizerCommon-asan-sparc*-Linux` tests were `FAIL`ing, like
SanitizerCommon-asan-sparc-Linux :: Linux/aligned_alloc-alignment.cpp
[...]
SanitizerCommon-asan-sparcv9-Linux :: Linux/aligned_alloc-alignment.cpp
[...]
many of them due to
fatal error: error in backend: Function "_Z14User_OnSIGSEGViP9siginfo_tPv": over-aligned dynamic alloca not supported.
which breaks ASan on Sparc. Currently ASan is only built for the benefit
of `gcc` where it does work. However, when enabling the compilation in
`compiler-rt` to make certain it continues to build, I missed
`compiler-rt/test/sanitizer_common` when disabling ASan testing on Sparc
(it's not yet enabled on Solaris).
This patch fixes the issue.
Tested on `sparcv9-sun-solaris2.11` with the `sanitizer_comon` testsuite enabled.
Differential Revision: https://reviews.llvm.org/D85732
This fixes https://bugs.llvm.org/show_bug.cgi?id=47118. Before this change, when the sigaction interceptor prevented a signal from being changed, it also prevented the oldact output parameter from being written to. This resulted in a use-of-uninitialized-variable by any program that used sigaction for the purpose of reading signals.
This change fixes this: the regular sigaction implementation is still called, but with the act parameter nullified, preventing any changes.
Patch By: IanPudney
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85797
Commit 9385aaa848 ("[sancov] Fix PR33732") added zeroext to
__sanitizer_cov_trace(_const)?_cmp[1248] parameters for x86_64 only,
however, it is useful on other targets, in particular, on SystemZ: it
fixes swap-cmp.test.
Therefore, use it on all targets. This is safe: if target ABI does not
require zero extension for a particular parameter, zeroext is simply
ignored. A similar change has been implemeted as part of commit
3bc439bdff ("[MSan] Add instrumentation for SystemZ"), and there were
no problems with it.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85689
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
When one tries to minimize timeouts using -minimize_crash=1,
minimization immediately fails. The following sequence of events is
responsible for this:
[parent] SIGALRM occurs
[parent] read() returns -EINTR (or -ERESTARTSYS according to strace)
[parent] fgets() returns NULL
[parent] ExecuteCommand() closes child's stdout and returns
[child ] SIGALRM occurs
[child ] AlarmCallback() attempts to write "ALARM: ..." to stdout
[child ] Dies with SIGPIPE without calling DumpCurrentUnit()
[parent] Does not see -exact_artifact_path and exits
When minimizing, the timer in parent is not necessary, so fix by not
setting it in this case.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85359
On iOS, when we `longjmp()` out of the signal handler, a subsequent call
to `sigaltstack()` still reports that we are executing on the signal
handler stack.
Tracking rdar://66789814
Differential Revision: https://reviews.llvm.org/D85677
Two tests currently `XPASS` on sparcv9:
Unexpectedly Passed Tests (2):
Builtins-sparcv9-sunos :: compiler_rt_logbl_test.c
Builtins-sparcv9-sunos :: divtc3_test.c
The following patch fixes this.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D85119
Two ubsan tests FAIL on Sparc:
UBSan-Standalone-sparc :: TestCases/TypeCheck/misaligned.cpp
UBSan-Standalone-sparcv9 :: TestCases/TypeCheck/misaligned.cpp
I've reported the details in Bug 47015, but it boils down to the fact that
the `s1` subtest actually incurs a fault on strict-alignment targets like
Sparc which UBSan doesn't expect.
This can be fixed like the `w1` subtest by compiling with
`-fno-sanitize-recover=alignment`.
Tested on `sparcv9-sun-solaris2.11`, `amd64-pc-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D85433
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
When the FreeBSD qsort() implementation recurses, it does so using an
interposable function call, so we end up calling the interceptor again
and set the saved comparator to wrapped_qsort_compar. This results in an
infinite loop and a eventually a stack overflow since wrapped_qsort_compar
ends up calling itself. This means that ASAN is completely broken on
FreeBSD for programs that call qsort(). I found this while running
check-all on a FreeBSD system a ASAN-instrumented LLVM.
Fix this by checking whether we are recursing inside qsort before writing
to qsort_compar. The same bug exists in the qsort_r interceptor, so use the
same approach there. I did not test the latter since the qsort_r function
signature does not match and therefore it's not intercepted on FreeBSD/macOS.
Fixes https://llvm.org/PR46832
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D84509
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
This quietly disabled use of zlib on Windows even when building with
-DLLVM_ENABLE_ZLIB=FORCE_ON.
> Rather than handling zlib handling manually, use find_package from CMake
> to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
> HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
> set to YES, which requires the distributor to explicitly select whether
> zlib is enabled or not. This simplifies the CMake handling and usage in
> the rest of the tooling.
>
> This is a reland of abb0075 with all followup changes and fixes that
> should address issues that were reported in PR44780.
>
> Differential Revision: https://reviews.llvm.org/D79219
This reverts commit 10b1b4a231 and follow-ups
64d99cc6ab and
f9fec0447e.
* Add SystemZ to the list of supported architectures.
* XFAIL a few tests.
Coverage reporting is broken, and is not easy to fix (see comment in
coverage.test). Interaction with sanitizers needs to be investigated
more thoroughly, since they appear to reduce coverage in certain cases.
These UBSan tests assert the absence of runtime errors via `count 0`,
which means "expect no output". This fails the test unnecessarily in
some environments (e.g., iOS simulator in our case). Alter the test to
be a bit more specific and "expect no error" instead of "expect no
output".
rdar://65503408
Differential Revision: https://reviews.llvm.org/D85155
GlobalISel is the default ISel for aarch64 at -O0. Prior to D78465, GlobalISel
didn't have support for dealing with address-of-global lowerings, so it fell
back to SelectionDAGISel.
HWASan Globals require special handling, as they contain the pointer tag in the
top 16-bits, and are thus outside the code model. We need to generate a `movk`
in the instruction sequence with a G3 relocation to ensure the bits are
relocated properly. This is implemented in SelectionDAGISel, this patch does
the same for GlobalISel.
GlobalISel and SelectionDAGISel differ in their lowering sequence, so there are
differences in the final instruction sequence, explained in
`tagged-globals.ll`. Both of these implementations are correct, but GlobalISel
is slightly larger code size / slightly slower (by a couple of arithmetic
instructions). I don't see this as a problem for now as GlobalISel is only on
by default at `-O0`.
Reviewed By: aemerson, arsenm
Differential Revision: https://reviews.llvm.org/D82615
Otherwise we end up compiling in C++ mode and on FreeBSD
/usr/include/stdatomic.h is not compatible with C++ since it uses _Bool.
Reviewed By: guiand, eugenis, vitalybuka, emaste
Differential Revision: https://reviews.llvm.org/D84510
See https://llvm.org/PR46862. This does not fix the underlying issue but at
least it allows me to run check-all again without having to disable
building compiler-rt.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D84650
InstrProfilingBuffer.c.o is generic code that must support compilation
into freestanding projects. This gets rid of its dependence on the
_getpagesize symbol from libc, shifting it to InstrProfilingFile.c.o.
This fixes a build failure seen in a firmware project.
rdar://66249701
Not matching the (real) variadic declaration makes the interceptor take garbage inputs on Darwin/AArch64.
Differential Revision: https://reviews.llvm.org/D84570
Adds the -fast-16-labels flag, which enables efficient instrumentation
for DFSan when the user needs <=16 labels. The instrumentation
eliminates most branches and most calls to __dfsan_union or
__dfsan_union_load.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D84371
...which is set based on HAVE_RPC_XDR_H. At least Fedora 32 does not have a
/usr/include/rpc/xdr.h, so failed this test introduced with
<https://reviews.llvm.org/D83358> "[Sanitizers] Add interceptor for
xdrrec_create".
Differential Revision: https://reviews.llvm.org/D84740
This patch marks compiler-rt/test/asan/TestCases/Linux/allocator_oom_test.cpp
unsupported on PowerPC 64bit-LE architecture since this test fails when run
on a machine with larger system memory.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D84786
The commit 8372d50508 has been reverted
(eafeb8af34) because it broke asan
tests on green dragon buildbots.
The underlying issue has been fixed in 4dd5c2bee3.
Summary: This patch disables implicit builtin knowledge about memcmp-like functions when compiling the program for fuzzing, i.e., when -fsanitize=fuzzer(-no-link) is given. This allows libFuzzer to always intercept memcmp-like functions as it effectively disables optimizing calls to such functions into different forms. This is done by adding a set of flags (-fno-builtin-memcmp and others) in the clang driver. Individual -fno-builtin-* flags previously used in several libFuzzer tests are now removed, as it is now done automatically in the clang driver.
The patch was once reverted in 8ef9e2bf35, as this patch was dependent on a reverted commit f78d9fceea. This reverted commit was recommitted in 831ae45e3d, so relanding this dependent patch too.
Reviewers: morehouse, hctim
Subscribers: cfe-commits, #sanitizers
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83987
Summary: This patch disables (i) noasan-memcmp64.test on Windows as libFuzzer's interceptors are only supported on Linux for now, and (ii) bcmp.test as on Windows bcmp is not available in strings.h.
Reviewers: morehouse, hctim, kcc
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84536
If we define memcmp in an archive, bcmp should be defined as well (many libc
define bcmp/memcmp in one object file). Otherwise if the application calls bcmp
or strcmp which gets optimized to bcmp (SimplifyLibCalls), the undefined
reference may pull in an optimized bcmp/strcmp implementation (libc replacement)
later on the linker command line. If both libFuzzer's memcmp and the optimized
memcmp are strong => there will be a multiple definition error.
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
Support fast16labels in `dfsan_has_label`, and print an error for all
other API functions. For `dfsan_dump_labels` we return silently rather
than crashing since it is also called from the atexit handler where it
is undefined behavior to call exit() again.
Reviewed By: kcc
Differential Revision: https://reviews.llvm.org/D84215
Summary: libFuzzer's interceptor support added in 831ae45e3d currently only works on Linux. This patch disables the test cases added as part of that commit on non-Linux platforms.
Reviewers: morehouse, hctim
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84434
Summary: libFuzzer intercepts certain library functions such as memcmp/strcmp by defining weak hooks. Weak hooks, however, are called only when other runtimes such as ASan is linked. This patch defines libFuzzer's own interceptors, which is linked into the libFuzzer executable when other runtimes are not linked, i.e., when -fsanitize=fuzzer is given, but not others.
The patch once landed but was reverted in 8ef9e2bf35 due to an assertion failure caused by calling an intercepted function, strncmp, while initializing the interceptors in fuzzerInit(). This issue is now fixed by calling libFuzzer's own implementation of library functions (i.e., internal_*) when the fuzzer has not been initialized yet, instead of recursively calling fuzzerInit() again.
Reviewers: kcc, morehouse, hctim
Subscribers: #sanitizers, krytarowski, mgorny, cfe-commits
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83494
Summary:
Support fast16labels in `dfsan_has_label`, and print an error for all
other API functions.
Reviewers: kcc, vitalybuka, pcc
Reviewed By: kcc
Subscribers: jfb, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84215
For now, xdrrec_create is only intercepted Linux as its signature
is different on Solaris.
The method of intercepting xdrrec_create isn't super ideal but I
couldn't think of a way around it: Using an AddrHashMap combined
with wrapping the userdata field.
We can't just allocate a handle on the heap in xdrrec_create and leave
it at that, since there'd be no way to free it later. This is because it
doesn't seem to be possible to access handle from the XDR struct, which
is the only argument to xdr_destroy.
On the other hand, the callbacks don't have a way to get at the
x_private field of XDR, which is what I chose for the HashMap key. So we
need to wrap the handle parameter of the callbacks. But we can't just
pass x_private as handle (as it hasn't been set yet). We can't put the
wrapper struct into the HashMap and pass its pointer as handle, as the
key we need (x_private again) hasn't been set yet.
So I allocate the wrapper struct on the heap, pass its pointer as
handle, and put it into the HashMap so xdr_destroy can find it later and
destroy it.
Differential Revision: https://reviews.llvm.org/D83358
Otherwise if 'ld' is an older system LLD (FreeBSD; or if someone adds 'ld' to
point to an LLD from a different installation) which does not support the
current ModuleSummaryIndex::BitCodeSummaryVersion, the test will fail.
Add lit feature 'binutils_lto'. GNU ld is more common than GNU gold, so
we can just require 'is_binutils_lto_supported' to additionally support GNU ld.
Reviewed By: myhsu
Differential Revision: https://reviews.llvm.org/D84133
These calls are neither intercepted by compiler-rt nor is libatomic.a
naturally instrumented.
This patch uses the existing libcall mechanism to detect a call
to atomic_load or atomic_store, and instruments them much like
the preexisting instrumentation for atomics.
Calls to _load are modified to have at least Acquire ordering, and
calls to _store at least Release ordering. Because this needs to be
converted at runtime, msan injects a LUT (implemented as a vector
with extractelement).
Differential Revision: https://reviews.llvm.org/D83337
Summary:
It turns out the `CHECK(addr >= reinterpret_cast<upt>(info.dli_saddr)`
can fail because on armv7s on iOS 9.3 `dladdr()` returns
`info.dli_saddr` with an address larger than the address we provided.
We should avoid crashing here because crashing in the middle of reporting
an issue is very unhelpful. Instead we now try to compute a function offset
if the value we get back from `dladdr()` looks sane, otherwise we don't
set the function offset.
A test case is included. It's basically a slightly modified version of
the existing `test/sanitizer_common/TestCases/Darwin/symbolizer-function-offset-dladdr.cpp`
test case that doesn't run on iOS devices right now.
More details:
In the concrete scenario on armv7s `addr` is `0x2195c870` and the returned
`info.dli_saddr` is `0x2195c871`.
This what LLDB says when disassembling the code.
```
(lldb) dis -a 0x2195c870
libdyld.dylib`<redacted>:
0x2195c870 <+0>: nop
0x2195c872 <+2>: blx 0x2195c91c ; symbol stub for: exit
0x2195c876 <+6>: trap
```
The value returned by `dladdr()` doesn't make sense because it points
into the middle of a instruction.
There might also be other bugs lurking here because I noticed that the PCs we
gather during stackunwinding (before changing them with
`StackTrace::GetPreviousInstructionPc()`) look a little suspicious (e.g. the
PC stored for the frame with fail to symbolicate is 0x2195c873) as they don't
look properly aligned. This probably warrants further investigation in the future.
rdar://problem/65621511
Reviewers: kubamracek, yln
Subscribers: kristof.beyls, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84262
... on systems where wait() isn't one of the declarations transitively included
via unistd.h (i.e. Darwin).
Differential Revision: https://reviews.llvm.org/D84207
Note: Resubmission with frame pointers force-enabled to fix builds with
-DCOMPILER_RT_BUILD_BUILTINS=False
Summary:
Splits the unwinder into a non-segv (for allocation/deallocation traces) and a
segv unwinder. This ensures that implementations can select an accurate, slower
unwinder in the segv handler (if they choose to use the GWP-ASan provided one).
This is important as fast frame-pointer unwinders (like the sanitizer unwinder)
don't like unwinding through signal handlers.
Reviewers: morehouse, cryptoad
Reviewed By: morehouse, cryptoad
Subscribers: cryptoad, mgorny, eugenis, pcc, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83994
It was causing tests to fail in -DCOMPILER_RT_BUILD_BUILTINS=OFF builds:
GwpAsan-Unittest :: ./GwpAsan-x86_64-Test/BacktraceGuardedPoolAllocator.DoubleFree
GwpAsan-Unittest :: ./GwpAsan-x86_64-Test/BacktraceGuardedPoolAllocator.UseAfterFree
see comment on the code review.
> Summary:
> Splits the unwinder into a non-segv (for allocation/deallocation traces) and a
> segv unwinder. This ensures that implementations can select an accurate, slower
> unwinder in the segv handler (if they choose to use the GWP-ASan provided one).
> This is important as fast frame-pointer unwinders (like the sanitizer unwinder)
> don't like unwinding through signal handlers.
>
> Reviewers: morehouse, cryptoad
>
> Reviewed By: morehouse, cryptoad
>
> Subscribers: cryptoad, mgorny, eugenis, pcc, #sanitizers
>
> Tags: #sanitizers
>
> Differential Revision: https://reviews.llvm.org/D83994
This reverts commit 502f0cc0e3.
GCC r187297 (2012-05) introduced `__gcov_dump` and `__gcov_reset`.
`__gcov_flush = __gcov_dump + __gcov_reset`
The resolution to https://gcc.gnu.org/PR93623 ("No need to dump gcdas when forking" target GCC 11.0) removed the unuseful and undocumented __gcov_flush.
Close PR38064.
Reviewed By: calixte, serge-sans-paille
Differential Revision: https://reviews.llvm.org/D83149
Summary:
Splits the unwinder into a non-segv (for allocation/deallocation traces) and a
segv unwinder. This ensures that implementations can select an accurate, slower
unwinder in the segv handler (if they choose to use the GWP-ASan provided one).
This is important as fast frame-pointer unwinders (like the sanitizer unwinder)
don't like unwinding through signal handlers.
Reviewers: morehouse, cryptoad
Reviewed By: morehouse, cryptoad
Subscribers: cryptoad, mgorny, eugenis, pcc, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83994
This causes binaries linked with this runtime to crash on startup if
dlsym uses any of the intercepted functions. (For example, that happens
when using tcmalloc as the allocator: dlsym attempts to allocate memory
with malloc, and tcmalloc uses strncmp within its implementation.)
Also revert dependent commit "[libFuzzer] Disable implicit builtin knowledge about memcmp-like functions when -fsanitize=fuzzer-no-link is given."
This reverts commit f78d9fceea and 12d1124c49.
Similar to the reason behind moving __llvm_profile_filename into a
separate file[1]. When users try to use Full LTO with BFD linker to
generate IR level PGO profile, the __llvm_profile_raw_version variable,
which is used for marking instrumentation level, generated by frontend
would somehow conflict with the weak symbol provided by profiling
runtime.
In most of the cases, BFD linkers will pick profiling runtime's weak symbol
as the real definition and thus generate the incorrect instrumentation
level metadata in the final executables.
Moving __llvm_profile_raw_version into a separate file would make
linkers not seeing the weak symbol in the archive unless the frontend
doesn't generate one.
[1] https://reviews.llvm.org/D34797
Differential Revision: https://reviews.llvm.org/D83967
Summary: This patch disables implicit builtin knowledge about memcmp-like functions when compiling the program for fuzzing, i.e., when -fsanitize=fuzzer(-no-link) is given. This allows libFuzzer to always intercept memcmp-like functions as it effectively disables optimizing calls to such functions into different forms. This is done by adding a set of flags (-fno-builtin-memcmp and others) in the clang driver. Individual -fno-builtin-* flags previously used in several libFuzzer tests are now removed, as it is now done automatically in the clang driver.
Reviewers: morehouse, hctim
Subscribers: cfe-commits, #sanitizers
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83987
Summary: libFuzzer intercepts certain library functions such as memcmp/strcmp by defining weak hooks. Weak hooks, however, are called only when other runtimes such as ASan is linked. This patch defines libFuzzer's own interceptors, which is linked into the libFuzzer executable when other runtimes are not linked, i.e., when -fsanitize=fuzzer is given, but not others.
Reviewers: kcc, morehouse, hctim
Reviewed By: morehouse, hctim
Subscribers: krytarowski, mgorny, cfe-commits, #sanitizers
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83494
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
The %arm_call_apsr expansion doesn't work when config.clang is a clang
driver defaulting to a non-ARM arch. Rather than fix it, replace
call_apsr.S with inline asm in call_apsr.h, which also resolves the
FIXME added in D31259.
Maybe the `__attribute__((noinline,pcs("aapcs")))` attributes are
unnecessary on the static functions, but I was unsure what liberty the
compiler had to insert instructions that modified the condition codes,
so it seemed helpful.
Differential Revision: https://reviews.llvm.org/D82147
Summary: Fixed an implicit definition warning by including <string.h>. Also fixed run-time assertions that the return value of strxfrm_l calls is less than the buffer size by increasing the size of the referenced buffer.
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83593
This is exposed by https://reviews.llvm.org/D83486.
When the host is UTF8, we may get n >10, causing assert failure.
Increase the buffersize to support UTF-8 to C conversion.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D83719
Check that the implicit cast from `id` used to construct the element
variable in an ObjC for-in statement is valid.
This check is included as part of a new `objc-cast` sanitizer, outside
of the main 'undefined' group, as (IIUC) the behavior it's checking for
is not technically UB.
The check can be extended to cover other kinds of invalid casts in ObjC.
Partially addresses: rdar://12903059, rdar://9542496
Differential Revision: https://reviews.llvm.org/D71491
Summary:
This allows using lit substitutions in the `COMPILER_RT_EMULATOR` variable.
(For reference, the ability to expand substitutions recursively has been introduced in https://reviews.llvm.org/D76178.)
Reviewers: phosek, compnerd
Reviewed By: compnerd
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83489
Summary:
Right now the lit config builds up an environment that the tests will be run in. However, it does it from scratch instead of adding new variables to the parent process environment. This may (and does) result in strange behavior when running tests with an executor (i. e. with the `COMPILER_RT_EMULATOR` CMake variable set to something), since the executor may need some of the parent process's environment variables.
Here this is fixed.
Reviewers: compnerd, phosek
Reviewed By: compnerd
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83486
Summary:
These changes are necessary to support remote running compiler-rt tests
that were compiled on Windows.
Most of the code here has been copy-pasted from other lit configs.
Why do we remove the conversions to ASCII in the crt config?
We set the `universal_newlines` argument to `True` in `Popen` instead.
This is supported in both Python 2.7 and 3, is easier
(no need to do the `str(dir.decode('ascii'))` dance) and less
error prone.
Also, this is necessary because if the config is executed on Windows,
and `execute_external` is `True`, we take the branch
`if sys.platform in ['win32'] and execute_external`,
and if we use Python 3, then the `dir` variable is a byte-like object,
not str, but the ``replace method on byte-like objects requires its
arguments to also be byte-like objects, which is incompatible with
Python 2 etc etc.
It is a lot simpler to just work with strings in the first place, which
is achieved by setting `universal_newlines` to `True`. As far as
I understand, this way wasn't taken because of the need to support
Python <2.7, but this is not the case now.
Reviewers: compnerd, phosek, weimingz
Reviewed By: compnerd
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83485
This also allows intercepting these getprotoent functions on Linux as
well, since Linux exposes them.
Differential Revision: https://reviews.llvm.org/D82424
This test spawns 32 child processes which race to update counters on
shared memory pages. On some Apple-internal machines, two processes race
to perform an update in approximately 0.5% of the test runs, leading to
dropped counter updates. Deflake the test by using atomic increments.
Tested with:
```
$ for I in $(seq 1 1000); do echo ":: Test run $I..."; ./bin/llvm-lit projects/compiler-rt/test/profile/Profile-x86_64h/ContinuousSyncMode/online-merging.c -av || break; done
```
rdar://64956774
atexit registered functions run earlier so `__attribute__((destructor))`
annotated functions cannot be tracked.
Set a priority of 100 (compatible with GCC 7 onwards) to track
destructors and destructors whose priorities are greater than 100.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=7970
Reviewed By: calixte, marco-c
Differential Revision: https://reviews.llvm.org/D82253
The builtins library name is special on Android:
* There is an "-android" suffix.
* For the compiler-rt i386 architecture, Android targets i686 (in the
triple and in the builtins library filename)
With this change, check-builtins works with Android.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D82149
This patch changes types of some integer function arguments or return values from `si_int` to the default `int` type to make it more compatible with `libgcc`.
The compiler-rt/lib/builtins/README.txt has a link to the [libgcc specification](http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc). This specification has an explicit note on `int`, `float` and other such types being just illustrations in some cases while the actual types are expressed with machine modes.
Such usage of always-32-bit-wide integer type may lead to issues on 16-bit platforms such as MSP430. Provided [libgcc2.h](https://gcc.gnu.org/git/?p=gcc.git;a=blob_plain;f=libgcc/libgcc2.h;hb=HEAD) can be used as a reference for all targets supported by the libgcc, this patch fixes some existing differences in helper declarations.
This patch is expected to not change behavior at all for targets with 32-bit `int` type.
Differential Revision: https://reviews.llvm.org/D81285
Summary: As the parent process would return 0 independent of whether the child succeeded, assertions in the child would be ignored.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D82400
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
Summary:
Add a flag to omit the xray_fn_idx to cut size overhead and relocations
roughly in half at the cost of reduced performance for single function
patching. Minor additions to compiler-rt support per-function patching
without the index.
Reviewers: dberris, MaskRay, johnislarry
Subscribers: hiraditya, arphaman, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D81995
Summary:
Before unwinding the stack, `__asan_handle_no_return` is supposed to
unpoison the entire stack - that is, remove the entries in the shadow
memory corresponding to stack (e.g. redzone markers around variables).
This does not work correctly if `__asan_handle_no_return` is called from
the alternate stack used in signal handlers, because the stack top is
read from a cache, which yields the default stack top instead of the
signal alternate stack top.
It is also possible to jump between the default stack and the signal
alternate stack. Therefore, __asan_handle_no_return needs to unpoison
both.
Reviewers: vitalybuka, kubamracek, kcc, eugenis
Reviewed By: vitalybuka
Subscribers: phosek, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76986
Summary:
The `execute_external` global variable is defined in [`lit.common.cfg.py`](fcfb3170a7/compiler-rt/test/lit.common.cfg.py (L18-L27)) and used here (on lines 23 and 39). However, this variable is not visible in configs that are loaded independently.
Explicitly assign it to the correct value to avoid `NameError`.
Reviewers: compnerd, phosek
Reviewed By: compnerd, phosek
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79892
Summary: Refactor the current global header iteration to be callback-based, and add a feature that reports the size of the global variable during reporting. This allows binaries without symbols to still report the size of the global variable, which is always available in the HWASan globals PT_NOTE metadata.
Reviewers: eugenis, pcc
Reviewed By: pcc
Subscribers: mgorny, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D80599
Having the input dumped on failure seems like a better
default: I debugged FileCheck tests for a while without knowing
about this option, which really helps to understand failures.
Remove `-dump-input-on-failure` and the environment variable
FILECHECK_DUMP_INPUT_ON_FAILURE which are now obsolete.
Differential Revision: https://reviews.llvm.org/D81422
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object. This
metadata prevents discarding of the global object in linker GC unless
the referenced object is also discarded.
Furthermore, when a function symbol is discarded by the linker, setting
up !associated metadata allows linker to discard counters, data and
values associated with that function symbol. This is not possible today
because there's metadata to guide the linker. This approach is also used
by other instrumentations like sanitizers.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object. This
metadata prevents discarding of the global object in linker GC unless
the referenced object is also discarded.
Furthermore, when a function symbol is discarded by the linker, setting
up !associated metadata allows linker to discard counters, data and
values associated with that function symbol. This is not possible today
because there's metadata to guide the linker. This approach is also used
by other instrumentations like sanitizers.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
This flag suppresses TSan FPs on Darwin. I removed this flag
prematurely and have been dealing with the fallout ever since.
This commit puts back the flag, reverting 7d1085cb [1].
[1] https://reviews.llvm.org/D55075
It seems that after dc52ce424b, all big-endian problems have been fixed.
01899bb4e4 seems to have fixed XFAIL: * of
profile/instrprof-gcov-__gcov_flush-terminate.test
This essentially reverts commit 5a9b792d72 and
93d5ae3af1.
global-ctor.ll no longer checks what it intended to check
(@_GLOBAL__sub_I_global-ctor.ll needs a !dbg to work).
Rewrite it.
gcov 3.4 and gcov 4.2 use the same format, thus we can lower the version
requirement to 3.4
Summary: Non-zero malloc fill is causing way too many hard to debug issues.
Reviewers: kcc, pcc, hctim
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D81284
Summary:
As explained in https://bugs.llvm.org/show_bug.cgi?id=46208,
symbolization on Windows after inlining and around
lambdas/std::functions doesn't work very well. Under the new pass
manager, there is inlining at -O1.
use-after-scope-capture.cpp checks that the symbolization points to the
line containing "return x;", but the combination of
Windows/inlining/lambdas makes the symbolization point to the line
"f = [&x]() {".
Mark the lambda as noinline since this test is not a test for
symbolization.
Reviewers: hans, dblaikie, vitalybuka
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D81193
Summary:
This patch moves the setting of `LD_PRELOAD` "inwards" to avoid issues
where the built library needs to be loaded with the dynamic linker that
was configured with the build (and cannot, for example, be loaded by the
dynamic linker associated with the `env` utility).
Reviewed By: vitalybuka, nemanjai, jsji
Differential Revision: https://reviews.llvm.org/D79695
The test read from an uninitialized buffer which could cause the output
to be unpredictable.
The test is currently disabled so this won't actually change anything
until the test is re-enabled.
Add ThreadClock:: global_acquire_ which is the last time another thread
has done a global acquire of this thread's clock.
It helps to avoid problem described in:
https://github.com/golang/go/issues/39186
See test/tsan/java_finalizer2.cpp for a regression test.
Note the failuire is _extremely_ hard to hit, so if you are trying
to reproduce it, you may want to run something like:
$ go get golang.org/x/tools/cmd/stress
$ stress -p=64 ./a.out
The crux of the problem is roughly as follows.
A number of O(1) optimizations in the clocks algorithm assume proper
transitive cumulative propagation of clock values. The AcquireGlobal
operation may produce an inconsistent non-linearazable view of
thread clocks. Namely, it may acquire a later value from a thread
with a higher ID, but fail to acquire an earlier value from a thread
with a lower ID. If a thread that executed AcquireGlobal then releases
to a sync clock, it will spoil the sync clock with the inconsistent
values. If another thread later releases to the sync clock, the optimized
algorithm may break.
The exact sequence of events that leads to the failure.
- thread 1 executes AcquireGlobal
- thread 1 acquires value 1 for thread 2
- thread 2 increments clock to 2
- thread 2 releases to sync object 1
- thread 3 at time 1
- thread 3 acquires from sync object 1
- thread 1 acquires value 1 for thread 3
- thread 1 releases to sync object 2
- sync object 2 clock has 1 for thread 2 and 1 for thread 3
- thread 3 releases to sync object 2
- thread 3 sees value 1 in the clock for itself
and decides that it has already released to the clock
and did not acquire anything from other threads after that
(the last_acquire_ check in release operation)
- thread 3 does not update the value for thread 2 in the clock from 1 to 2
- thread 4 acquires from sync object 2
- thread 4 detects a false race with thread 2
as it should have been synchronized with thread 2 up to time 2,
but because of the broken clock it is now synchronized only up to time 1
The global_acquire_ value helps to prevent this scenario.
Namely, thread 3 will not trust any own clock values up to global_acquire_
for the purposes of the last_acquire_ optimization.
Reviewed-in: https://reviews.llvm.org/D80474
Reported-by: nvanbenschoten (Nathan VanBenschoten)
Some testcases are unexpectedly passing with NPM.
This is because the target functions are inlined in NPM.
I think we should add noinline attribute to keep these test points.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79648
A few testcases are still using deprecated options.
warning: argument '-fsanitize-coverage=[func|bb|edge]' is deprecated,
use '-fsanitize-coverage=[func|bb|edge],[trace-pc-guard|trace-pc]'
instead [-Wdeprecated]
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79741
Per target runtime dir may change the suffix of shared libs.
We can not assume we are always building with per_target_runtime_dir on.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D80243
Summary:
The previous code tries to strip out parentheses and anything in between
them. I'm guessing the idea here was to try to drop any listed arguments
for the function being symbolized. Unfortunately this approach is broken
in several ways.
* Templated functions may contain parentheses. The existing approach
messes up these names.
* In C++ argument types are part of a function's signature for the
purposes of overloading so removing them could be confusing.
Fix this simply by not trying to adjust the function name that comes
from `atos`.
A test case is included.
Without the change the test case produced output like:
```
WRITE of size 4 at 0x6060000001a0 thread T0
#0 0x10b96614d in IntWrapper<void >::operator=> const&) asan-symbolize-templated-cxx.cpp:10
#1 0x10b960b0e in void writeToA<IntWrapper<void > >>) asan-symbolize-templated-cxx.cpp:30
#2 0x10b96bf27 in decltype>)>> >)) std::__1::__invoke<void >), IntWrapper<void > >>), IntWrapper<void >&&) type_traits:4425
#3 0x10b96bdc1 in void std::__1::__invoke_void_return_wrapper<void>::__call<void >), IntWrapper<void > >>), IntWrapper<void >&&) __functional_base:348
#4 0x10b96bd71 in std::__1::__function::__alloc_func<void >), std::__1::allocator<void >)>, void >)>::operator>&&) functional:1533
#5 0x10b9684e2 in std::__1::__function::__func<void >), std::__1::allocator<void >)>, void >)>::operator>&&) functional:1707
#6 0x10b96cd7b in std::__1::__function::__value_func<void >)>::operator>&&) const functional:1860
#7 0x10b96cc17 in std::__1::function<void >)>::operator>) const functional:2419
#8 0x10b960ca6 in Foo<void >), IntWrapper<void > >::doCall>) asan-symbolize-templated-cxx.cpp:44
#9 0x10b96088b in main asan-symbolize-templated-cxx.cpp:54
#10 0x7fff6ffdfcc8 in start (in libdyld.dylib) + 0
```
Note how the symbol names for the frames are messed up (e.g. #8, #1).
With the patch the output looks like:
```
WRITE of size 4 at 0x6060000001a0 thread T0
#0 0x10005214d in IntWrapper<void (int)>::operator=(IntWrapper<void (int)> const&) asan-symbolize-templated-cxx.cpp:10
#1 0x10004cb0e in void writeToA<IntWrapper<void (int)> >(IntWrapper<void (int)>) asan-symbolize-templated-cxx.cpp:30
#2 0x100057f27 in decltype(std::__1::forward<void (*&)(IntWrapper<void (int)>)>(fp)(std::__1::forward<IntWrapper<void (int)> >(fp0))) std::__1::__invoke<void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)> >(void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)>&&) type_traits:4425
#3 0x100057dc1 in void std::__1::__invoke_void_return_wrapper<void>::__call<void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)> >(void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)>&&) __functional_base:348
#4 0x100057d71 in std::__1::__function::__alloc_func<void (*)(IntWrapper<void (int)>), std::__1::allocator<void (*)(IntWrapper<void (int)>)>, void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) functional:1533
#5 0x1000544e2 in std::__1::__function::__func<void (*)(IntWrapper<void (int)>), std::__1::allocator<void (*)(IntWrapper<void (int)>)>, void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) functional:1707
#6 0x100058d7b in std::__1::__function::__value_func<void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) const functional:1860
#7 0x100058c17 in std::__1::function<void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>) const functional:2419
#8 0x10004cca6 in Foo<void (IntWrapper<void (int)>), IntWrapper<void (int)> >::doCall(IntWrapper<void (int)>) asan-symbolize-templated-cxx.cpp:44
#9 0x10004c88b in main asan-symbolize-templated-cxx.cpp:54
#10 0x7fff6ffdfcc8 in start (in libdyld.dylib) + 0
```
rdar://problem/58887175
Reviewers: kubamracek, yln
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79597
Fixes PR45673
The commit 9180c14fe4 (D76206) resolved only a part of the problem
of concurrent .gcda file creation. It ensured that only one process
creates the file but did not ensure that the process locks the
file first. If not, the process which created the file may clobber
the contents written by a process which locked the file first.
This is the cause of PR45673.
This commit prevents the clobbering by revising the assumption
that a process which creates the file locks the file first.
Regardless of file creation, a process which locked the file first
uses fwrite (new_file==1) and other processes use mmap (new_file==0).
I also tried to keep the creation/first-lock process same by using
mkstemp/link/unlink but the code gets long. This commit is more
simple.
Note: You may be confused with other changes which try to resolve
concurrent file access. My understanding is (may not be correct):
D76206: Resolve race of .gcda file creation (but not lock)
This one: Resolve race of .gcda file creation and lock
D54599: Same as D76206 but abandoned?
D70910: Resolve race of multi-threaded counter flushing
D74953: Resolve counter sharing between parent/children processes
D78477: Revision of D74953
Differential Revision: https://reviews.llvm.org/D79556
Summary:
Fix hwasan allocator not respecting the requested alignment when it is
higher than a page, but still within primary (i.e. [2048, 65536]).
Reviewers: pcc, hctim, cryptoad
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79656
https://reviews.llvm.org/D63616 added `-fsanitize-coverage-whitelist`
and `-fsanitize-coverage-blacklist` for clang.
However, it was done only for legacy pass manager.
This patch enable it for new pass manager as well.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79653
Summary:
This is necessary to handle calls to free() after __hwasan_thread_exit,
which is possible in glibc.
Also, add a null check to GetCurrentThread, otherwise the logic in
GetThreadByBufferAddress turns it into a non-null value. This means that
all of the checks for GetCurrentThread() != nullptr do not have any
effect at all right now!
Reviewers: pcc, hctim
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79608
Summary: The new pass manager symbolizes the location as ~Simple instead of Simple::~Simple.
Reviewers: rnk, leonardchan, vitalybuka
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79594
Summary:
When forking in several threads, the counters were written out in using the same global static variables (see GCDAProfiling.c): that leads to crashes.
So when there is a fork, the counters are resetted in the child process and they will be dumped at exit using the interprocess file locking.
When there is an exec, the counters are written out and in case of failures they're resetted.
Reviewers: jfb, vsk, marco-c, serge-sans-paille
Reviewed By: marco-c, serge-sans-paille
Subscribers: llvm-commits, serge-sans-paille, dmajor, cfe-commits, hiraditya, dexonsmith, #sanitizers, marco-c, sylvestre.ledru
Tags: #sanitizers, #clang, #llvm
Differential Revision: https://reviews.llvm.org/D78477
It looks like some bots are failing with os log not giving any
output. This might be due to the system under test being heavy
load so the 2 minute window might not be large enough. This
patch makes the window larger in the hope that this test will
be more reliable.
rdar://problem/62141527
This is the first patch in a series to add support for the AVR target.
This patch includes changes to make compiler-rt more target independent
by not relying on the width of an int or long.
Differential Revision: https://reviews.llvm.org/D78662
* Changing source lines seems to cause us to hit rdar://problem/62132428.
* Even if I workaround the above issue sometimes the source line in the dylib reported by atos is off by one.
It's simpler to just disable the test for now.
rdar://problem/61793759
We can use `simctl spawn --standalone` to enable running tests without
the need for an already-booted simulator instance. This also side-steps
the problem of not having a good place to shutdown the instance after
we are finished with testing.
rdar://58118442
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D78409
Summary:
Due to sandbox restrictions in the recent versions of the simulator runtime the
atos program is no longer able to access the task port of a parent process
without additional help.
This patch fixes this by registering a task port for the parent process
before spawning atos and also tells atos to look for this by setting
a special environment variable.
This patch is based on an Apple internal fix (rdar://problem/43693565) that
unfortunately contained a bug (rdar://problem/58789439) because it used
setenv() to set the special environment variable. This is not safe because in
certain circumstances this can trigger a call to realloc() which can fail
during symbolization leading to deadlock. A test case is included that captures
this problem.
The approach used to set the necessary environment variable is as
follows:
1. Calling `putenv()` early during process init (but late enough that
malloc/realloc works) to set a dummy value for the environment variable.
2. Just before `atos` is spawned the storage for the environment
variable is modified to contain the correct PID.
A flaw with this approach is that if the application messes with the
atos environment variable (i.e. unsets it or changes it) between the
time its set and the time we need it then symbolization will fail. We
will ignore this issue for now but a `DCHECK()` is included in the patch
that documents this assumption but doesn't check it at runtime to avoid
calling `getenv()`.
The issue reported in rdar://problem/58789439 manifested as a deadlock
during symbolization in the following situation:
1. Before TSan detects an issue something outside of the runtime calls
setenv() that sets a new environment variable that wasn't previously
set. This triggers a call to malloc() to allocate a new environment
array. This uses TSan's normal user-facing allocator. LibC stores this
pointer for future use later.
2. TSan detects an issue and tries to launch the symbolizer. When we are in the
symbolizer we switch to a different (internal allocator) and then we call
setenv() to set a new environment variable. When this happen setenv() sees
that it needs to make the environment array larger and calls realloc() on the
existing enviroment array because it remembers that it previously allocated
memory for it. Calling realloc() fails here because it is being called on a
pointer its never seen before.
The included test case closely reproduces the originally reported
problem but it doesn't replicate the `((kBlockMagic)) ==
((((u64*)addr)[0])` assertion failure exactly. This is due to the way
TSan's normal allocator allocates the environment array the first time
it is allocated. In the test program addr[0] accesses an inaccessible
page and raises SIGBUS. If TSan's SIGBUS signal handler is active, the
signal is caught and symbolication is attempted again which results in
deadlock.
In the originally reported problem the pointer is successfully derefenced but
then the assert fails due to the provided pointer not coming from the active
allocator. When the assert fails TSan tries to symbolicate the stacktrace while
already being in the middle of symbolication which results in deadlock.
rdar://problem/58789439
Reviewers: kubamracek, yln
Subscribers: jfb, #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D78179
Summary:
These tests pass with clang, but fail if gcc was used.
gcc build creates similar but not the same stacks.
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: dvyukov, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D78114
Summary:
Previously `AtosSymbolizer` would set the PID to examine in the
constructor which is called early on during sanitizer init. This can
lead to incorrect behaviour in the case of a fork() because if the
symbolizer is launched in the child it will be told examine the parent
process rather than the child.
To fix this the PID is determined just before the symbolizer is
launched.
A test case is included that triggers the buggy behaviour that existed
prior to this patch. The test observes the PID that `atos` was called
on. It also examines the symbolized stacktrace. Prior to this patch
`atos` failed to symbolize the stacktrace giving output that looked
like...
```
#0 0x100fc3bb5 in __sanitizer_print_stack_trace asan_stack.cpp:86
#1 0x10490dd36 in PrintStack+0x56 (/path/to/print-stack-trace-in-code-loaded-after-fork.cpp.tmp_shared_lib.dylib:x86_64+0xd36)
#2 0x100f6f986 in main+0x4a6 (/path/to/print-stack-trace-in-code-loaded-after-fork.cpp.tmp_loader:x86_64+0x100001986)
#3 0x7fff714f1cc8 in start+0x0 (/usr/lib/system/libdyld.dylib:x86_64+0x1acc8)
```
After this patch stackframes `#1` and `#2` are fully symbolized.
This patch is also a pre-requisite refactor for rdar://problem/58789439.
Reviewers: kubamracek, yln
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D77623
Summary:
In preparation for writing a test for a bug fix we need to be able to
see the command used to launch the symbolizer process. This feature
will likely be useful for debugging how the Sanitizers use the
symbolizer in general.
This patch causes the command line used to launch the process to be
shown at verbosity level 3 and higher.
A small test case is included.
Reviewers: kubamracek, yln, vitalybuka, eugenis, kcc
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D77622
For targets where char is unsigned (like PowerPC), something like
char c = fgetc(...) will never produce a char that will compare
equal to EOF so this loop does not terminate.
Change the type to int (which appears to be the POSIX return type
for fgetc).
This allows the test case to terminate normally on PPC.
Buildbots say:
[126/127] Running lint check for sanitizer sources...
FAILED: projects/compiler-rt/lib/CMakeFiles/SanitizerLintCheck
cd /home/buildbots/ppc64be-clang-multistage-test/clang-ppc64be-multistage/stage1/projects/compiler-rt/lib && env LLVM_CHECKOUT=/home/buildbots/ppc64be-clang-multistage-test/clang-ppc64be-multistage/llvm/llvm SILENT=1 TMPDIR= PYTHON_EXECUTABLE=/usr/bin/python COMPILER_RT=/home/buildbots/ppc64be-clang-multistage-test/clang-ppc64be-multistage/llvm/compiler-rt /home/buildbots/ppc64be-clang-multistage-test/clang-ppc64be-multistage/llvm/compiler-rt/lib/sanitizer_common/scripts/check_lint.sh
/home/buildbots/ppc64be-clang-multistage-test/clang-ppc64be-multistage/llvm/compiler-rt/test/tsan/fiber_cleanup.cpp:71: Could not find a newline character at the end of the file. [whitespace/ending_newline] [5]
ninja: build stopped: subcommand failed.
Somehow this check is not part of 'ninja check-tsan'.
When creating and destroying fibers in tsan a thread state is created and destroyed. Currently, a memory mapping is leaked with each fiber (in __tsan_destroy_fiber). This causes applications with many short running fibers to crash or hang because of linux vm.max_map_count.
The root of this is that ThreadState holds a pointer to ThreadSignalContext for handling signals. The initialization and destruction of it is tied to platform specific events in tsan_interceptors_posix and missed when destroying a fiber (specifically, SigCtx is used to lazily create the ThreadSignalContext in tsan_interceptors_posix). This patch cleans up the memory by makinh the ThreadState create and destroy the ThreadSignalContext.
The relevant code causing the leak with fibers is the fiber destruction:
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber) {
FiberSwitchImpl(thr, fiber);
ThreadFinish(fiber);
FiberSwitchImpl(fiber, thr);
internal_free(fiber);
}
Author: Florian
Reviewed-in: https://reviews.llvm.org/D76073
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Looks like this test fails on Darwin x86_64 as well:
http://green.lab.llvm.org/green/job/clang-stage1-RA/8593/
Command Output (stderr):
--
fatal error: error in backend: Global variable '__sancov_gen_' has an invalid section specifier '__DATA,__sancov_bool_flag': mach-o section specifier requires a section whose length is between 1 and 16 characters.
The intent of the `llvm_gcda_start_file` function is that only
one process create the .gcda file and initialize it to be updated
by other processes later.
Before this change, if multiple processes are started simultaneously,
some of them may initialize the file because both the first and
second `open` calls may succeed in a race condition and `new_file`
becomes 1 in those processes. This leads incorrect coverage counter
values. This often happens in MPI (Message Passing Interface) programs.
The test program added in this change is a simple reproducer.
This change ensures only one process creates/initializes the file by
using the `O_EXCL` flag.
Differential Revision: https://reviews.llvm.org/D76206
Summary:
Follow up fix to 445b810fbd. The `log show` command only works for
privileged users so run a quick test of the command during lit config to
see if the command works and only add the `darwin_log_cmd` feature if
this is the case.
Unfortunately this means the `asan/TestCases/Darwin/duplicate_os_log_reports.cpp`
test and any other tests in the future that use this feature won't run
for unprivileged users which is likely the case in CI.
rdar://problem/55986279
Reviewers: kubamracek, yln, dcoughlin
Subscribers: Charusso, #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76899
Summary:
When ASan reports an issue the contents of the system log buffer
(`error_message_buffer`) get flushed to the system log (via
`LogFullErrorReport()`). After this happens the buffer is not cleared
but this is usually fine because the process usually exits soon after
reporting the issue.
However, when ASan runs in `halt_on_error=0` mode execution continues
without clearing the buffer. This leads to problems if more ASan
issues are found and reported.
1. Duplicate ASan reports in the system log. The Nth (start counting from 1)
ASan report will be duplicated (M - N) times in the system log if M is the
number of ASan issues reported.
2. Lost ASan reports. Given a sufficient
number of reports the buffer will fill up and consequently cannot be appended
to. This means reports can be lost.
The fix here is to reset `error_message_buffer_pos` to 0 which
effectively clears the system log buffer.
A test case is included but unfortunately it is Darwin specific because
querying the system log is an OS specific activity.
rdar://problem/55986279
Reviewers: kubamracek, yln, vitalybuka, kcc, filcab
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76749
Disable symbolization of results, since llvm-symbolizer cannot start
due to restricted readlink(), causing the test to die with SIGPIPE.
Author: Ilya Leoshkevich
Reviewed By: Evgenii Stepanov
Differential Revision: https://reviews.llvm.org/D76576
Temporarily revert "tsan: fix leak of ThreadSignalContext for fibers"
because it breaks the LLDB bot on GreenDragon.
This reverts commit 93f7743851.
This reverts commit d8a0f76de7.
When creating and destroying fibers in tsan a thread state
is created and destroyed. Currently, a memory mapping is
leaked with each fiber (in __tsan_destroy_fiber).
This causes applications with many short running fibers
to crash or hang because of linux vm.max_map_count.
The root of this is that ThreadState holds a pointer to
ThreadSignalContext for handling signals. The initialization
and destruction of it is tied to platform specific events
in tsan_interceptors_posix and missed when destroying a fiber
(specifically, SigCtx is used to lazily create the
ThreadSignalContext in tsan_interceptors_posix). This patch
cleans up the memory by inverting the control from the
platform specific code calling the generic ThreadFinish to
ThreadFinish calling a platform specific clean-up routine
after finishing a thread.
The relevant code causing the leak with fibers is the fiber destruction:
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber) {
FiberSwitchImpl(thr, fiber);
ThreadFinish(fiber);
FiberSwitchImpl(fiber, thr);
internal_free(fiber);
}
I would appreciate feedback if this way of fixing the leak is ok.
Also, I think it would be worthwhile to more closely look at the
lifecycle of ThreadState (i.e. it uses no constructor/destructor,
thus requiring manual callbacks for cleanup) and how OS-Threads/user
level fibers are differentiated in the codebase. I would be happy to
contribute more if someone could point me at the right place to
discuss this issue.
Reviewed-in: https://reviews.llvm.org/D76073
Author: Florian (Florian)
struct stack_t on Linux x86_64 has internal padding which may be left
uninitialized. The check should be replaced with multiple checks for
individual fields of the struct. For now, remove the check altogether.
Summary:
Move interceptor from msan to sanitizer_common_interceptors.inc, so that
other sanitizers could benefit.
Adjust FixedCVE_2016_2143() to deal with the intercepted uname().
Patch by Ilya Leoshkevich.
Reviewers: eugenis, vitalybuka, uweigand, jonpa
Reviewed By: eugenis, vitalybuka
Subscribers: dberris, krytarowski, #sanitizers, stefansf, Andreas-Krebbel
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76578
This test case fails due to different handling of weak items between
LLD and LD on PPC. The issue only occurs when the default linker is LLD
and the test case is run on a system where ASLR is enabled.
A recent change to MemorySSA caused LLVM to start optimizing the call to
'f(x)' into just 'x', despite the 'noinline' attribute. So try harder to
prevent this optimization from firing.