I believe we should be legalizing these with the rest of vector binary operations. If any custom lowering is required for these nodes, this will give the DAG combine between LegalizeVectorOps and LegalizeDAG to run on the custom code before constant build_vectors are lowered in LegalizeDAG.
I've moved MULHU/MULHS handling in AArch64 from Lowering to isel. Moving the lowering earlier caused build_vector+extract_subvector simplifications to kick in which made the generated code worse.
Differential Revision: https://reviews.llvm.org/D54276
llvm-svn: 347902
This is another patch for -x86-experimental-vector-widening. This pre widens narrow division by constants so that we can get pass the legal type check in the generic DAG combiner. Otherwise we end up scalarizing.
I've restricted this to splats for now because it was easy to just call DAG.getConstant. Not sure what we should do for non-splat? Increase the element size?Widen the constant vector by padding with 1?
Differential Revision: https://reviews.llvm.org/D54919
llvm-svn: 347898
Summary:
This patch passes an option '-z max-page-size=4096' to lld through clang driver.
This is for Android on Aarch64 target.
The lld default page size is too large for Aarch64, which produces larger .so files and images for arm64 device targets.
In this patch we set default page size to 4KB for Android Aarch64 targets instead.
Reviewers: srhines, danalbert, ruiu, chh, peter.smith
Reviewed By: srhines
Subscribers: javed.absar, kristof.beyls, cfe-commits, george.burgess.iv, llozano
Differential Revision: https://reviews.llvm.org/D55029
llvm-svn: 347897
This is an almost direct move of the functionality from InstCombine to
InstSimplify. There's no reason not to do this in InstSimplify because
we never create a new value with this transform.
(There's a question of whether any dominance-based transform belongs in
either of these passes, but that's a separate issue.)
I've changed 1 of the conditions for the fold (1 of the blocks for the
branch must be the block we started with) into an assert because I'm not
sure how that could ever be false.
We need 1 extra check to make sure that the instruction itself is in a
basic block because passes other than InstCombine may be using InstSimplify
as an analysis on values that are not wired up yet.
The 3-way compare changes show that InstCombine has some kind of
phase-ordering hole. Otherwise, we would have already gotten the intended
final result that we now show here.
llvm-svn: 347896
When tablegen detects that there exist two subregister compositions that
result in the same value for some register, it will emit a warning. This
kind of an overlap in compositions should only happen when it is caused
by a user-defined composition. It can happen, however, that the user-
defined composition is not identically equal to another one, but it does
produce the same value for one or more registers. In such cases suppress
the warning.
This patch is to silence the warning when building the System Z backend
after D50725.
Differential Revision: https://reviews.llvm.org/D50977
llvm-svn: 347894
Summary:
Replace `aext([asz]ext x)` with `aext/sext/zext x` in order to
reduce the number of instructions generated to clean up some
legalization artifacts.
Reviewers: aditya_nandakumar, dsanders, aemerson, bogner
Reviewed By: aemerson
Subscribers: rovka, kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D54174
llvm-svn: 347893
Summary: The original intention of !Config.xx.empty() was probably to emphasize the thing that is currently considered, but I feel the simplified form is actually easier to understand and it is also consistent with the call sites in other llvm components.
Reviewers: alexshap, rupprecht, jakehehrlich, jhenderson, espindola
Reviewed By: alexshap, rupprecht
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D55040
llvm-svn: 347891
This commit caused a large compile-time slowdown in some cases when NDEBUG is
off due to the dominator tree verification it added. Fix this by only doing
dominator tree and loop info verification when something has been hoisted.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347889
Summary:
The is the clang side of the fix in D55047, to handle the case where
two different modules have local variables with the same GUID because
they had the same source file name at compilation time. Allow multiple
symbols with the same GUID to be imported, and test that this case works
with the distributed backend path.
Depends on D55047.
Reviewers: evgeny777
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D55048
llvm-svn: 347887
Summary:
We can sometimes end up with multiple copies of a local variable that
have the same GUID in the index. This happens when there are local
variables with the same name that are in different source files having the
same name/path at compile time (but compiled into different bitcode objects).
In this case make sure we import the copy in the caller's module.
This enables importing both of the variables having the same GUID
(but which will have different promoted names since the module paths,
and therefore the module hashes, will be distinct).
Importing the wrong copy is particularly problematic for read only
variables, since we must import them as a local copy whenever
referenced. Otherwise we get undefs at link time.
Note that the llvm-lto.cpp and ThinLTOCodeGenerator changes are needed
for testing the distributed index case via clang, which will be sent as
a separate clang-side patch shortly. We were previously not doing the
dead code/read only computation before computing imports when testing
distributed index generation (like it was for testing importing and
other ThinLTO mechanisms alone).
Reviewers: evgeny777
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D55047
llvm-svn: 347886
"svn update --depth=..." is, annoyingly, not a specification of the
desired depth, but rather a _limit_ added on top of the "sticky" depth
in the working-directory. However, if the directory doesn't exist yet,
then it sets the sticky depth of the new directory entries.
Unfortunately, the svn command-line has no way of expanding the depth
of a directory from "empty" to "files", without also removing any
already-expanded subdirectories. The way you're supposed to increase
the depth of an existing directory is via --set-depth, but
--set-depth=files will also remove any subdirs which were already
requested.
This change avoids getting into the state of ever needing to increase
the depth of an existing directory from "empty" to "files" in the
first place, by:
1. Use svn update --depth=files, not --depth=immediates.
The latter has the effect of checking out the subdirectories and
marking them as depth=empty. The former excludes sub-directories from
the list of entries, which avoids the problem.
2. Explicitly populate missing parent directories.
Using --parents seemed nice and easy, but it marks the parent dirs as
depth=empty. Instead, check out parents explicitly if they're missing.
llvm-svn: 347883
This patch adds support for S_ANDN2, S_ORN2 32-bit and 64-bit instructions and adds splits to move them to the vector unit (for which there is no equivalent instruction). It modifies the way that the more complex scalar instructions are lowered to vector instructions by first breaking them down to sequences of simpler scalar instructions which are then lowered through the existing code paths. The pattern for S_XNOR has also been updated to apply inversion to one input rather than the output of the XOR as the result is equivalent and may allow leaving the NOT instruction on the scalar unit.
A new tests for NAND, NOR, ANDN2 and ORN2 have been added, and existing tests now hit the new instructions (and have been modified accordingly).
Differential: https://reviews.llvm.org/D54714
llvm-svn: 347877
My change svn-id: 347871 caused a buildbot failure due to an unused
variable def (used in an assert).
Change-Id: Ia882d18bb6fa79b4d7bbfda422b9ea5d23eab336
llvm-svn: 347876
The custom handling seems to all be implemented already.
This avoids regressions in a future patch when float vectors
are ordinarily promoted to double vectors in variadic calls.
llvm-svn: 347873
Summary:
When splitting musttail calls, the split blocks' original terminators
get removed; inform the DTU when this happens.
Also add a testcase that fails an assertion in the DTU without this fix.
Reviewers: fhahn, junbuml
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55027
llvm-svn: 347872
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
Summary: When building in an LLVM context, we should respect its LLVM_ENABLE_LIBXML2 option.
Reviewers: vitalybuka, mspertus, modocache
Reviewed By: modocache
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D53212
llvm-svn: 347870
1. The variables were confusing: 'C' typically refers to a constant, but here it was the Cmp.
2. Formatting violations.
3. Simplify code to return true/false constant.
llvm-svn: 347868
This reverts commits r347776 and r347778.
The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.
llvm-svn: 347867
Fix ICEs on template instantiations that were leading to
the creation of invalid code patterns with address spaces.
Incorrect cases are now diagnosed properly.
Differential Revision: https://reviews.llvm.org/D54858
llvm-svn: 347865
It causes asserts building BoringSSL. See https://crbug.com/91009#c3 for
repro.
This also reverts the follow-ups:
Revert r347724 "Do not insert prefetches with unsupported memory operands."
Revert r347606 "[X86] Add dependency from X86 to ProfileData after rL347596"
Revert r347607 "Add new passes to X86 pipeline tests"
llvm-svn: 347864
Summary:
`MustBuildLookupTable` must always be called on a primary context as we otherwise
trigger an assert, but we don't ensure that this will always happen in our code right now.
This patch explicitly requests the primary context when doing this call as this shouldn't break
anything (as calling `getPrimaryContext` on a context which is its own primary context is a no-op)
but will catch these rare cases where we somehow operate on a declaration context that is
not its own primary context.
See also D54863.
Reviewers: martong, a.sidorin, shafik
Reviewed By: martong
Subscribers: davide, rnkovacs, cfe-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D54898
llvm-svn: 347863
* Tell the StackProtector pass to generate the epilogue instrumentation
when GlobalISel is enabled because GISel currently does not implement
the same deferred epilogue insertion as SelectionDAG.
* Update StackProtector::InsertStackProtectors() to find a stack guard
slot by searching for the llvm.stackprotector intrinsic when the
prologue was not created by StackProtector itself but the pass still
needs to generate the epilogue instrumentation. This fixes a problem
when the pass would abort because the stack guard AllocInst pointer
was null when generating the epilogue -- test
CodeGen/AArch64/GlobalISel/arm64-irtranslator-stackprotect.ll.
Differential Revision: https://reviews.llvm.org/D54518
llvm-svn: 347862
Change meaning of TargetOptions::EnableGlobalISel. The flag was
previously set only when a target switched on GlobalISel but it is now
always set when the GlobalISel pipeline is enabled. This makes the flag
consistent with TargetOptions::EnableFastISel and allows its use in
other parts of the compiler to determine when GlobalISel is enabled.
The EnableGlobalISel flag had previouly only one use in
TargetPassConfig::isGlobalISelAbortEnabled(). The method used its value
to determine if GlobalISel was enabled by a target and returned false in
such a case. To preserve the current behaviour, a new flag
TargetOptions::GlobalISelAbort is introduced to separately record the
abort behaviour.
Differential Revision: https://reviews.llvm.org/D54518
llvm-svn: 347861
A skeleton compilation unit may contain the DW_AT_str_offsets_base attribute
that points to the first string offset of the CU contribution to the
.debug_str_offsets. At the same time, when we use split dwarf,
the corresponding split debug unit also
may use DW_FORM_strx* forms pointing to its own .debug_str_offsets.dwo.
In that case, DWO does not contain DW_AT_str_offsets_base, but LLDB
still need to know and skip the .debug_str_offsets.dwo section header to
access the offsets.
The patch implements the support of DW_AT_str_offsets_base.
Differential revision: https://reviews.llvm.org/D54844
llvm-svn: 347859
This patch adds the ability to specify via tablegen which processor resources
are load/store queue resources.
A new tablegen class named MemoryQueue can be optionally used to mark resources
that model load/store queues. Information about the load/store queue is
collected at 'CodeGenSchedule' stage, and analyzed by the 'SubtargetEmitter' to
initialize two new fields in struct MCExtraProcessorInfo named `LoadQueueID` and
`StoreQueueID`. Those two fields are identifiers for buffered resources used to
describe the load queue and the store queue.
Field `BufferSize` is interpreted as the number of entries in the queue, while
the number of units is a throughput indicator (i.e. number of available pickers
for loads/stores).
At construction time, LSUnit in llvm-mca checks for the presence of extra
processor information (i.e. MCExtraProcessorInfo) in the scheduling model. If
that information is available, and fields LoadQueueID and StoreQueueID are set
to a value different than zero (i.e. the invalid processor resource index), then
LSUnit initializes its LoadQueue/StoreQueue based on the BufferSize value
declared by the two processor resources.
With this patch, we more accurately track dynamic dispatch stalls caused by the
lack of LS tokens (i.e. load/store queue full). This is also shown by the
differences in two BdVer2 tests. Stalls that were previously classified as
generic SCHEDULER FULL stalls, are not correctly classified either as "load
queue full" or "store queue full".
About the differences in the -scheduler-stats view: those differences are
expected, because entries in the load/store queue are not released at
instruction issue stage. Instead, those are released at instruction executed
stage. This is the main reason why for the modified tests, the load/store
queues gets full before PdEx is full.
Differential Revision: https://reviews.llvm.org/D54957
llvm-svn: 347857
The changed order of includes caused compile errors on MSVC due to
snprintf macro definition. snprintf should available since VS2015, and
the rest of the code seems to be able to use snprintf just fine without
this macro, so this removes it from the lldb driver as well.
llvm-svn: 347855
The _GLOBAL_OFFSET_TABLE_ is a linker defined symbol that is placed at
some location relative to the .got, .got.plt or .toc section. On some
targets such as Arm the correctness of some code sequences using a
relocation to _GLOBAL_OFFSET_TABLE_ depend on the value of the symbol
being in the linker defined place. Follow the ld.gold example and give
a multiple symbol definition error. The ld.bfd behaviour is to ignore the
definition in the input object and redefine it, which seems like it could
be more surprising.
fixes pr39587
Differential Revision: https://reviews.llvm.org/D54624
llvm-svn: 347854
Summary:
MachineLoopInfo cannot be relied on for correctness, because it cannot
properly recognize loops in irreducible control flow which can be
introduced by late machine basic block optimization passes. See the new
test case for the reduced form of an example that occurred in practice.
Use a simple fixpoint iteration instead.
In order to facilitate this change, refactor WaitcntBrackets so that it
only tracks pending events and registers, rather than also maintaining
state that is relevant for the high-level algorithm. Various accessor
methods can be removed or made private as a consequence.
Affects (in radv):
- dEQP-VK.glsl.loops.special.{for,while}_uniform_iterations.select_iteration_count_{fragment,vertex}
Fixes: r345719 ("AMDGPU: Rewrite SILowerI1Copies to always stay on SALU")
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54231
llvm-svn: 347853
Summary:
There is one obsolete reference to using -1 as an indication of "unknown",
but this isn't actually used anywhere.
Using unsigned makes robust wrapping checks easier.
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, llvm-commits, tpr, t-tye, hakzsam
Differential Revision: https://reviews.llvm.org/D54230
llvm-svn: 347852
Summary:
Instead of storing the "score" (last time point) of the various relevant
events, only store whether an event is pending or not.
This is sufficient, because whenever only one event of a count type is
pending, its last time point is naturally the upper bound of all time
points of this count type, and when multiple event types are pending,
the count type has gone out of order and an s_waitcnt to 0 is required
to clear any pending event type (and will then clear all pending event
types for that count type).
This also removes the special handling of GDS_GPR_LOCK and EXP_GPR_LOCK.
I do not understand what this special handling ever attempted to achieve.
It has existed ever since the original port from an internal code base,
so my best guess is that it solved a problem related to EXEC handling in
that internal code base.
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54228
llvm-svn: 347850
Summary:
It hides the type casting ugliness, and I happened to have to add a new
such loop (in a later patch).
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54227
llvm-svn: 347849
Summary:
Reduce the statefulness of the algorithm in two ways:
1. More clearly split generateWaitcntInstBefore into two phases: the
first one which determines the required wait, if any, without changing
the ScoreBrackets, and the second one which actually inserts the wait
and updates the brackets.
2. Communicate pre-existing s_waitcnt instructions using an argument to
generateWaitcntInstBefore instead of through the ScoreBrackets.
To simplify these changes, a Waitcnt structure is introduced which carries
the counts of an s_waitcnt instruction in decoded form.
There are some functional changes:
1. The FIXME for the VCCZ bug workaround was implemented: we only wait for
SMEM instructions as required instead of waiting on all counters.
2. We now properly track pre-existing waitcnt's in all cases, which leads
to less conservative waitcnts being emitted in some cases.
s_load_dword ...
s_waitcnt lgkmcnt(0) <-- pre-existing wait count
ds_read_b32 v0, ...
ds_read_b32 v1, ...
s_waitcnt lgkmcnt(0) <-- this is too conservative
use(v0)
more code
use(v1)
This increases code size a bit, but the reduced latency should still be a
win in basically all cases. The worst code size regressions in my shader-db
are:
WORST REGRESSIONS - Code Size
Before After Delta Percentage
1724 1736 12 0.70 % shaders/private/f1-2015/1334.shader_test [0]
2276 2284 8 0.35 % shaders/private/f1-2015/1306.shader_test [0]
4632 4640 8 0.17 % shaders/private/ue4_elemental/62.shader_test [0]
2376 2384 8 0.34 % shaders/private/f1-2015/1308.shader_test [0]
3284 3292 8 0.24 % shaders/private/talos_principle/1955.shader_test [0]
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54226
llvm-svn: 347848