New lld's files are spread under lib subdirectory, and it isn't easy
to find which files are actually maintained. This patch moves maintained
files to Common subdirectory.
Differential Revision: https://reviews.llvm.org/D37645
llvm-svn: 314719
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
We should be using one of BIND_OPCODE_SET_DYLIB_SPECIAL_IMM, BIND_OPCODE_SET_DYLIB_ORDINAL_IMM,
and BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB depending on whether ordinals are <= 0, <= 15, > 15.
This matches the behaviour of ld64.
llvm-svn: 278407
We already had logic for binding opcodes had the same addend as last time. This adds
the cases where the ordinal, symbol name, type, and segment offsets are the same as
the last emitted ordinal.
This gets us one step closer to emitting rebase opcodes as compressed as ld64 can manage.
llvm-svn: 278405
Using vmsize to populate this file works when outputing MachO images, but fails
when outputting relocatable objects. This patch fixes the computation to use
file offsets, which works for both output types.
Fixes <rdar://problem/27727666>
llvm-svn: 278297
The export trie was being emitted in the order the nodes were
added to the vector, but instead needs to be visited in the order
that the nodes are traversed. This matches the behaviour of ld64.
llvm-svn: 277869
This patch causes LLD to build stabs debugging symbols for files containing
DWARF debug info, and to propagate existing stabs symbols for object files
built using '-r' mode. This enables debugging of binaries generated by LLD
from MachO objects.
llvm-svn: 276921
These methods were responsible for some of the few remaining calls
to llvm::errorCodeToError. Converting them makes us have more Error's
in the api and fewer error_code's.
llvm-svn: 264974
On a 32-bit output, we may write LC_MAIN (which contains a uint64_t) to
an unaligned address. This changes it to use a memcpy instead which is UB safe.
llvm-svn: 264232
On a 32-bit output, we may write LC_SOURCE_VERSION (which contains a uint64_t) to
an unaligned address. This changes it to use a memcpy instead which is UB safe.
llvm-svn: 264202
Also added the defaults for whether to generate this load command, which
the cmdline options are able to override.
There was also a difference to ld64 which is fixed here in that ld64 will
generate an empty data in code command if requested.
rdar://problem/24472630
llvm-svn: 260191
This load command generates data in the LINKEDIT section which
is a list of ULEB128 delta's to all of the functions in the __text section.
It is then 0 terminated and pointer aligned to pad.
ld64 exposes the -function-starts and no-function-starts cmdline options
to override behaviour from the defaults based on file types.
rdar://problem/24472630
llvm-svn: 260188
The initial segment protection was also being used to set the maximum
segment protection level. Instead, the maximum should be set according
to the architecture we are linking. For example on Mac OS it should be
RWX on most pages, but on iOS is often on R_X.
rdar://problem/24515136
llvm-svn: 259966
We currently tag on a "__LINKEDIT" when we are emitting the segments.
However, an upcoming patch aims to set the initprot and maxprot segment members
to their correct values, and in order to share code, its better to create this
segment for real and handle it in buildFileOffsets the same way ld64 does.
The commit for segment protections will add a test for this all being correct so
no test here until that code is committed.
llvm-svn: 259960
On Mac OS 10.5 and later, with X86_64 and outputting a dynamic executable,
ld64 set the CPU_SUBTYPE_LIB64 mask on the cpusubtype in the mach_header.
This adds the same functionality to lld.
rdar://problem/24507177
llvm-svn: 259826
This is of the form A.B.C.D.E and to match ld64's behaviour, is
always output to files, even when the version is 0.
rdar://problem/24472630
llvm-svn: 259746
In the case where we are emitting to an object file, the platform is
possibly unknown, and the source object files contained load commands
for version min, we can take the maximum of those min versions and
emit in in the output object file.
This test also tests r259739.
llvm-svn: 259742
If the command line contains something like -macosx_version_min and we
don't explicitly disable generation with -no_version_load_command then
we generate the LC_VERSION_MIN command in the output file.
There's a couple of FIXME's in here. These will be handled soon with
more tests but I didn't want to grow this patch any more than it already was.
rdar://problem/24472630
llvm-svn: 259718
The TrieNode/TrieEdge data structures here are allocated in a bumpptrallocator.
Unfortunately, TrieNode contained a std::list<TrieEdge> and as the allocator doesn't
call the TrieNode destructor, we ended up leaking the memory allocated by the std::list
itself.
Instead we can use an intrusive list as then we save the extra allocations anyway.
llvm-svn: 258725
table.
The first entry in the MachO symbol table is always the empty string: make sure
we reserve space for it, or we will overflow the symbol table by one byte.
No test case - this manifests as an occasional memory error. In the near future
I hope to set up a bot building and runnnig LLD with sanitizers - that should
catch future instances of this issue.
llvm-svn: 255178
This is a basic initial implementation of the -flat_namespace and
-undefined options for LLD-darwin. It ignores several subtlties,
but the result is close enough that we can now link LLVM (but not
clang) on Darwin and pass all regression tests.
llvm-svn: 248732
This patch defines implicit conversion between integers and PowerOf2
instances, so uses of the classes is now implicit and look like
regular integers. Now we are ready to remove the scaffolding.
llvm-svn: 233245
This patch is to make instantiation and conversion to an integer explicit,
so that we can mechanically replace all occurrences of the class with
integer in the next step.
Now get() returns an alignment value rather than its log2 value.
llvm-svn: 233242
Summary:
Fix the binary file reader to properly read dyld version info.
Update the install_name test case to properly test the binary reader. We can't use '-print_atoms' as the output format is 'native' yaml and it does not contains the dyld current and compatibility versions.
Also change the timestamp value of LD_ID_DYLD to match the one generated by ld64.
The dynamic linker (dyld) used to expects different values for timestamp in LD_ID_DYLD and LD_LOAD_DYLD for prebound images. While prebinding is deprecated, we should probably keep it safe and match ld64.
Reviewers: kledzik
Subscribers: llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D6736
llvm-svn: 224681
Summary:
Work on adding -rpath support to the mach-o linker.
This patch is based on the ld64 behavior for the command line option validation.
It includes a basic test to check that the LC_RPATH load commands are properly generated when that option is used.
It also add LC_RPATH support to the binary reader, but I don't know how to test it though.
Reviewers: kledzik
Subscribers: llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D6724
llvm-svn: 224544
In PR21682 Jean-Daliel Dupas found a leak in the trie builder and suggested
a fix was to use a list instead of SmallVector so that the list elements
could be allocated in the BumpPtrAllocator.
llvm-svn: 223104
Mach-o does not use a simple SO_NEEDED to track dependent dylibs. Instead,
the linker copies four things from each dylib to each client: the runtime path
(aka "install name"), the build time, current version (dylib build number), and
compatibility version The build time is no longer used (it cause every rebuild
of a dylib to be different). The compatibility version is usually just 1.0
and never changes, or the dylib becomes incompatible.
This patch copies that information into the NormalizedMachO format and
propagates it to clients.
llvm-svn: 222300
The way lazy binding works in mach-o is that the linker generates a helper
function and has the stub (PLT) initially jump to it. The helper function
pushes an extra parameter then jumps into dyld. The extra parameter is an
offset into the lazy binding info where dyld will find the information about
which symbol to bind and way lazy binding pointer to update.
llvm-svn: 221654
lld was regenerating LC_DATA_IN_CODE in .o output files, but not into
final linked images.
Update test case to verify data-in-code info makes it into final linked images.
llvm-svn: 220827