Currently we consider that each constant has itself as a base value. I.e "base(const) = const".
This introduces couple of problems when we are trying to avoid reporting constants in statepoint live sets:
1. When querying "base( phi(const1, const2) )" we will get "phi(const1, const2)" as a base pointer. Since
it's not a constant we will record it in a stack map. However on practice we don't want this to happen
(constant are never relocated).
2. base( phi(const, gc ptr) ) = phi( const, base(gc ptr) ). This particular case imposes challenge on our
runtime - we don't expect to see constant base pointers other than null. This problems can be avoided
by treating all constant as if they were derived from null pointer base. I.e in a first case we will
not include constant pointer in a stack map at all. In a second case we will get "phi(null, base(gc ptr))"
as a base pointer which is a lot more convenient.
Differential Revision: http://reviews.llvm.org/D20584
llvm-svn: 270993
This is assertion is no longer necessary since we never record
constants in the live set anyway. (They are never recorded in
the initial live set, and constant bases are removed near line 2119)
Differential Revision: http://reviews.llvm.org/D20293
llvm-svn: 269764
This new verifier rule lets us unambigously pick a calling convention
when creating a new declaration for
`@llvm.experimental.deoptimize.<ty>`. It is also congruent with our
lowering strategy -- since all calls to `@llvm.experimental.deoptimize`
are lowered to calls to `__llvm_deoptimize`, it is reasonable to enforce
a unique calling convention.
Some of the tests that were breaking this verifier rule have had to be
split up into different .ll files.
The inliner was violating this rule as well, and has been fixed to avoid
producing invalid IR.
llvm-svn: 269261
Goal of this change is to guarantee stable ordering of the statepoint arguments and other
newly inserted values such as gc.relocates. Previously we had explicit sorting in a couple
of places. However for unnamed values ordering was partial and overall we didn't have any
strong invariant regarding it. This change switches all data structures to use SetVector's
and MapVector's which provide possibility for deterministic iteration over them.
Explicit sorting is now redundant and was removed.
Differential Revision: http://reviews.llvm.org/D19669
llvm-svn: 268502
Don't emit a gc.result for a statepoint lowered from
@llvm.experimental.deoptimize since the call into __llvm_deoptimize is
effectively noreturn. Instead follow the corresponding gc.statepoint
with an "unreachable".
llvm-svn: 265485
This changes RS4GC to lower calls to ``@llvm.experimental.deoptimize``
to gc.statepoints wrapping ``__llvm_deoptimize``, and changes
``callsGCLeafFunction`` to recognize ``@llvm.experimental.deoptimize``
as a non GC leaf function.
I've had to hard code the ``"__llvm_deoptimize"`` name in
RewriteStatepointsForGC; since ``TargetLibraryInfo`` is available only
during codegen. This isn't without precedent in the codebase, so I'm
not overtly concerned.
llvm-svn: 264456
This flag was part of a migration to a new means of handling vectors-of-points which was described in the llvm-dev thread "FYI: Relocating vector of pointers". The old code path has been off by default for a while without complaints, so time to cleanup.
llvm-svn: 261569
This change reverts "246133 [RewriteStatepointsForGC] Reduce the number of new instructions for base pointers" and a follow on bugfix 12575.
As pointed out in pr25846, this code suffers from a memory corruption bug. Since I'm (empirically) not going to get back to this any time soon, simply reverting the problematic change is the right answer.
llvm-svn: 261565
The full diff for the test directory may be hard to read because of the
filename clash; so here's all that happened as far as the tests are
concerned:
```
cd test/Transforms/RewriteStatepointsForGC
git rm *ll
git mv deopt-bundles/* ./
rmdir deopt-bundles
find . -name '*.ll' | xargs gsed -i 's/-rs4gc-use-deopt-bundles //g'
```
llvm-svn: 259129
two-invokes-one-landingpad.ll was only moved (and not "ported"), but
having everything in the `deopt-bundles` directory will make later
changes more obvious.
llvm-svn: 259125
This change permanently clamps -spp-no-statepoints to true (the code
deletion will come later). Tests that specifically tested
PlaceSafepoint's ability to wrap calls in gc.statepoint have been moved
to RS4GC's test suite.
llvm-svn: 259096
Summary:
This adds a new kind of operand bundle to LLVM denoted by the
`"gc-transition"` tag. Inputs to `"gc-transition"` operand bundle are
lowered into the "transition args" section of `gc.statepoint` by
`RewriteStatepointsForGC`.
This removes the last bit of functionality that was unsupported in the
deopt bundle based code path in `RewriteStatepointsForGC`.
Reviewers: pgavlin, JosephTremoulet, reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16342
llvm-svn: 258338
Summary:
This is analogous to r256079, which removed an overly strong assertion, and
r256812, which simplified the code by replacing three conditionals by one.
Reviewers: reames
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D16019
llvm-svn: 257250
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
Summary: This patch adds a check in SplitLandingPadPredecessors to see if the original landingpad instruction has any uses. If not, we don't need to create a PHINode for it in the joint block since it's gonna be a dead code anyway. The motivation for this patch is that we found a bug that SplitLandingPadPredecessors created a PHINode of token type landingpad, which failed the verifier since PHINode can not be token type. However, the created PHINode will never be used in our code pattern. This patch will workaround this bug, and we might add supports in SplitLandingPadPredecessors to handle token type landingpad with uses in the future.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15835
llvm-svn: 256972
Summary:
Previously, only the outer (last) bitcast was rematerialized, resulting in a
use of the unrelocated inner (first) bitcast after the statepoint. See the
test case for an example.
Reviewers: igor-laevsky, reames
Subscribers: reames, alex, llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D15789
llvm-svn: 256520
Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint.
Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob
Subscribers: reames, mjacob, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15662
llvm-svn: 256443
Previously, "%" + name of the value was printed for each derived and base
pointer. This is correct for instructions, but wrong for e.g. globals.
llvm-svn: 256305
Summary:
These were deprecated 11 months ago when a generic
llvm.experimental.gc.result intrinsic, which works for all types, was added.
Reviewers: sanjoy, reames
Subscribers: sanjoy, chenli, llvm-commits
Differential Revision: http://reviews.llvm.org/D15719
llvm-svn: 256262
Summary:
Previously, RS4GC crashed in CreateGCRelocates() because it assumed
that every base is also in the array of live variables, which isn't true if a
live variable has a constant base.
This change fixes the crash by making sure CreateGCRelocates() won't try to
relocate a live variable with a constant base. This would be unnecessary
anyway because anything with a constant base won't move.
Reviewers: reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D15556
llvm-svn: 256252
As shown by the included test case, it's reasonable to end up with constant references during base pointer calculation. The code actually handled this case just fine, we only had the assert to help isolate problems under the belief that constant references shouldn't be present in IR generated by managed frontends. This turned out to be wrong on two fronts: 1) Manual Jacobs is working on a language with constant references, and b) we found a case where the optimizer does create them in practice.
llvm-svn: 256079
We had two code paths. One would create names like "foo.1" and the other
names like "foo1".
For globals it is important to use "foo.1" to help C++ name demangling.
For locals there is no strong reason to go one way or the other so I
kept the most common mangling (foo1).
llvm-svn: 253804
We should remove noalias along with dereference and dereference_or_null attributes
because statepoint could potentially touch the entire heap including noalias objects.
Differential Revision: http://reviews.llvm.org/D14032
llvm-svn: 251333
`normalizeForInvokeSafepoint` in RewriteStatepointsForGC.cpp, as it is
written today, deals with `gc.relocate` and `gc.result` uses of a
statepoint equally well. This change documents this fact and adds a
test case.
There is no functional change here -- only documentation of existing
functionality.
llvm-svn: 250784
The `"statepoint-id"` and `"statepoint-num-patch-bytes"` attributes are
used solely to determine properties of the `gc.statepoint` being
created. Once the `gc.statepoint` is in place, these should be removed.
llvm-svn: 250491
Summary:
This is a step towards using operand bundles to carry deopt state till
RewriteStatepointsForGC. The change adds a flag to
RewriteStatepointsForGC that teaches it to pick up deopt state from a
`"deopt"` operand bundle attached to the `call` or `invoke` it is
wrapping.
The command line flag added, `-rs4gc-use-deopt-bundles`, will only exist
for a short while. Once we are able to pipe deopt bundle state through
the full optimization pipeline without problems, we will "constant fold"
`-rs4gc-use-deopt-bundles` to `true`.
Reviewers: swaroop.sridhar, reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D13372
llvm-svn: 250489
Summary:
These non-semantic changes will help make a later change adding
support for deopt operand bundles more streamlined.
Reviewers: reames, swaroop.sridhar
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13491
llvm-svn: 249779
This change is simply enhancing the existing inference algorithm to handle insertelement instructions by conservatively inserting a new instruction to propagate the vector of associated base pointers. In the process, I'm ripping out the peephole optimizations which mostly helped cover the fact this hadn't been done.
Note that most of the newly inserted nodes will be nearly immediately removed by the post insertion optimization pass introduced in 246718. Arguably, we should be trying harder to avoid the malloc traffic here, but I'd rather get the code correct, then worry about compile time.
Unlike previous extensions of the algorithm to handle more case, I discovered the existing code was causing miscompiles in some cases. In particular, we had an implicit assumption that the peephole covered *all* insert element instructions, so if we had a value directly based on a insert element the peephole didn't cover, we proceeded as if it were a base anyways. Not good. I believe we had the same issue with shufflevector which is why I adjusted the predicate for them as well.
Differential Revision: http://reviews.llvm.org/D12583
llvm-svn: 247210
When computing base pointers, we introduce new instructions to propagate the base of existing instructions which might not be bases. However, the algorithm doesn't make any effort to recognize when the new instruction to be inserted is the same as an existing one already in the IR. Since this is happening immediately before rewriting, we don't really have a chance to fix it after the pass runs without teaching loop passes about statepoints.
I'm really not thrilled with this patch. I've rewritten it 4 different ways now, but this is the best I've come up with. The case where the new instruction is just the original base defining value could be merged into the existing algorithm with some complexity. The problem is that we might have something like an extractelement from a phi of two vectors. It may be trivially obvious that the base of the 0th element is an existing instruction, but I can't see how to make the algorithm itself figure that out. Thus, I resort to the call to SimplifyInstruction instead.
Note that we can only adjust the instructions we've inserted ourselves. The live sets are still being tracked in side structures at this point in the code. We can't easily muck with instructions which might be in them. Long term, I'm really thinking we need to materialize the live pointer sets explicitly in the IR somehow rather than using side structures to track them.
Differential Revision: http://reviews.llvm.org/D12004
llvm-svn: 246133
To be clear: this is an *optimization* not a correctness change.
CodeGenPrep likes to duplicate icmps feeding branch instructions to take advantage of x86's ability to fuze many comparison/branch patterns into a single micro-op and to reduce the need for materializing i1s into general registers. PlaceSafepoints likes to place safepoint polls right at the end of basic blocks (immediately before terminators) when inserting entry and backedge safepoints. These two heuristics interact in a somewhat unfortunate way where the branch terminating the original block will be controlled by a condition driven by unrelocated pointers. This forces the register allocator to keep both the relocated and unrelocated values of the pointers feeding the icmp alive over the safepoint poll.
One simple fix would have been to just adjust PlaceSafepoints to move one back in the basic block, but you can reach similar cases as a result of LICM or other hoisting passes. As a result, doing a post insertion fixup seems to be more robust.
I considered doing this in CodeGenPrep itself, but having to update the live sets of already rewritten safepoints gets complicated fast. In particular, you can't just use def/use information because by moving the icmp, we're extending the live range of it's inputs potentially.
Instead, this patch teaches RewriteStatepointsForGC to make the required adjustments before making the relocations explicit in the IR. This change really highlights the fact that RSForGC is a CodeGenPrep-like pass which is performing target specific lowering. In the long run, we may even want to combine the two though this would require a lot more smarts to be integrated into RSForGC first. We currently rely on being able to run a set of cleanup passes post rewriting because the IR RSForGC generates is pretty damn ugly.
Differential Revision: http://reviews.llvm.org/D11819
llvm-svn: 244821
When rewriting the IR such that base pointers are available for every live pointer, we potentially need to duplicate instructions to propagate the base. The original code had only handled PHI and Select under the belief those were the only instructions which would need duplicated. When I added support for vector instructions, I'd added a collection of hacks for ExtractElement which caught most of the common cases. Of course, I then found the one test case my hacks couldn't cover. :)
This change removes all of the early hacks for extract element. By defining extractelement as a BDV (rather than trying to look through it), we can extend the rewriting algorithm to duplicate the extract as needed. Note that a couple of peephole optimizations were left in for the moment, because while we now handle extractelement as a first class citizen, we're not yet handling insertelement. That change will follow in the near future.
llvm-svn: 244808
I looked into adding a warning / error for this to FileCheck, but there doesn't
seem to be a good way to avoid it triggering on the instances of it in RUN lines.
llvm-svn: 244481
The names for instructions inserted were previous dependent on iteration order. By deriving the names from the original instructions, we can avoid instability in tests without resorting to ordered traversals. It also makes the IR mildly easier to read at large scale.
llvm-svn: 243140
This change extends the detection of base pointers for vector constructs to handle arbitrary phi and select nodes. The existing non-vector code already handles those, so this is basically just extending the vector special case to be less special cased. It still isn't generalized vector handling since we can't handle arbitrary vector instructions (e.g. shufflevectors), but it's a lot closer.
The general structure of the change is as follows:
* Extend the base defining value relation over a subset of vector instructions and vector typed phi & select instructions.
* Move scalarization from before base pointer rewriting to after base pointer rewriting. The extension of the BDV relation is sufficient to find vector base phis for vector inputs.
* Preserve the existing special case logic for when the base of a vector element is locally obvious. This general idea could be extended to the scalar case as well.
Differential Revision: http://reviews.llvm.org/D10461#inline-84275
llvm-svn: 240850
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Summary:
Once a gc.statepoint has been rewritten to relocate live references, the
SSA values represent physical pointers instead of logical references.
Logical dereferencability does not imply physical dereferencability and
after RewriteStatepointsForGC has run any attributes that imply
dereferencability of the logical references need to be stripped.
This current approach is conservative, and can be made more precise
later if needed. For starters, we need to strip dereferencable
attributes only from pointers that live in the GC address space.
Reviewers: reames, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10105
llvm-svn: 238883
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.
This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.
PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.
Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9546
llvm-svn: 237214
When relocating a pointer, we need to determine a base pointer for the derived pointer being relocated. We have limited support for handling a pointer extracted from a vector; the current code only handled the case where the entire vector was known to contain base pointers. This patch extends the reasoning to handle chains of insertelements where the indices are constants. This case turns out to be fairly common in vectorized code. We can now handle vectors which contains mixtures of base and derived pointers provided the insertelements use constant indices.
Note that this doesn't solve the general problem. To handle variable indexed insertelements, we'd need to scalarize and introduce conditional branching based on the index. Alternatively, we could eagerly scalarize, but the code structure doesn't currently make either fix easy. The patch also doesn't handle shufflevector or other vector manipulation for much the same reasons. I plan to defer this work until I have a motivating test case.
Differential Revision: http://reviews.llvm.org/D9676
llvm-svn: 237200
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
llvm-svn: 237009
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
llvm-svn: 236888
There can be various constant pointers in the IR which do not get relocated at a safepoint. One example is the address of a global variable. Another example is a pointer created via inttoptr. Note that the optimizer itself likes to create such inttoptrs when locally propagating constants through dynamically dead code.
To deal with this, we need to exclude uses of constants from contributing to the liveness of a safepoint which might reach that use. At some later date, it might be worth exploring what could be done to support the relocation of various special types of "constants", but that's future work.
Differential Revision: http://reviews.llvm.org/D9236
llvm-svn: 235821
Same as r235145 for the call instruction - the justification, tradeoffs,
etc are all the same. The conversion script worked the same without any
false negatives (after replacing 'call' with 'invoke').
llvm-svn: 235755