Commit Graph

36 Commits

Author SHA1 Message Date
River Riddle d289a97f91 [mlir][PDL] Add a PDL Interpreter Dialect
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.

An example of this representation is shown below:

```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite %root {
    pdl.replace %root with (%inputOperand)
  }
}

// May be represented in the interpreter dialect as follows:
module {
  func @matcher(%arg0: !pdl.operation) {
    pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
  ^bb1:
    pdl_interp.return
  ^bb2:
    pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
  ^bb3:
    pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
  ^bb4:
    %0 = pdl_interp.get_operand 0 of %arg0
    pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
  ^bb5:
    %1 = pdl_interp.get_result 0 of %arg0
    pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
  ^bb6:
    pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
  }
  module @rewriters {
    func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
      pdl_interp.replace %arg1 with(%arg0)
      pdl_interp.return
    }
  }
}
```

Differential Revision: https://reviews.llvm.org/D84579
2020-08-26 05:22:27 -07:00
River Riddle 3fb3927bd3 [mlir] Add a new "Pattern Descriptor Language" (PDL) dialect.
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.

PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.

An example pattern is shown below:

```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
  // External input operand values are specified via `pdl.input` operations.
  // Result types are constrainted via `pdl.type` operations.

  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite(%root) {
    pdl.replace %root with (%inputOperand)
  }
}
```

This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ

Differential Revision: https://reviews.llvm.org/D84578
2020-08-19 13:13:06 -07:00
Valentin Clement 4225e7fa34 [mlir][openacc] Introduce OpenACC dialect with parallel, data, loop operations
This patch introduces the OpenACC dialect with three operation defined
parallel, data and loop operations with custom parsing and printing.

OpenACC dialect RFC can be find here: https://llvm.discourse.group/t/rfc-openacc-dialect/546/2

Reviewed By: rriddle, kiranchandramohan

Differential Revision: https://reviews.llvm.org/D84268
2020-08-13 10:01:30 -04:00
Alex Zinenko c25b20c0f6 [mlir] NFC: Rename LoopOps dialect to SCF (Structured Control Flow)
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.

Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.

Differential Revision: https://reviews.llvm.org/D79578
2020-05-11 15:04:27 +02:00
Stephen Neuendorffer 5469f434bb [MLIR] Reapply: Adjust libMLIR building to more closely follow libClang
This reverts commit ab1ca6e60f.
2020-05-04 20:47:57 -07:00
Stella Laurenzo f5deb0878d Remove FxpMathOps dialect and Quantizer tool.
Summary:
* Removal of FxpMathOps was discussed on the mailing list.
* Will send a courtesy note about also removing the Quantizer (which had some dependencies on FxpMathOps).
* These were only ever used for experimental purposes and we know how to get them back from history as needed.
* There is a new proposal for more generalized quantization tooling, so moving these older experiments out of the way helps clean things up.

Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77479
2020-04-07 13:22:39 -07:00
Rob Suderman e708471395 [mlir][NFC] Cleanup AffineOps directory structure
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.

Differential Revision: https://reviews.llvm.org/D76161
2020-03-20 14:23:43 -07:00
Nicolas Vasilache 462db62053 [mlir][AVX512] Start a primitive AVX512 dialect
The Vector Dialect [document](https://mlir.llvm.org/docs/Dialects/Vector/) discusses the vector abstractions that MLIR supports and the various tradeoffs involved.

One of the layer that is missing in OSS atm is the Hardware Vector Ops (HWV) level.

This revision proposes an AVX512-specific to add a new Dialect/Targets/AVX512 Dialect that would directly target AVX512-specific intrinsics.

Atm, we rely too much on LLVM’s peephole optimizer to do a good job from small insertelement/extractelement/shufflevector. In the future, when possible, generic abstractions such as VP intrinsics should be preferred.

The revision will allow trading off HW-specific vs generic abstractions in MLIR.

Differential Revision: https://reviews.llvm.org/D75987
2020-03-20 14:11:57 -04:00
Rob Suderman 4d60f47b08 [mlir][NFC] Renamed VectorOps to Vector
Summary: Renamed VectorOps to Vector to avoid the redundant Ops suffix.

Differential Revision: https://reviews.llvm.org/D76317
2020-03-17 15:28:08 -07:00
Rob Suderman 363dd3f394 [mlir][NFC] Rename QuantOps to Quant
Summary:
Renamed QuantOps to Quant to avoid the Ops suffix. All dialects will contain
ops, so the Ops suffix is redundant.

Differential Revision: https://reviews.llvm.org/D76318
2020-03-17 15:16:47 -07:00
Jacques Pienaar 9a65d683e0 [mlir] Add target for Shape dialect
Summary:
Add targets and basic printing/parsing of types in Shape dialect.

Differential Revision: https://reviews.llvm.org/D76321
2020-03-17 14:54:25 -07:00
Stephen Neuendorffer 9f979d7ad5 [MLIR] Fixes for BUILD_SHARED_LIBS=on
Differential Revision: https://reviews.llvm.org/D75308
2020-03-06 13:25:18 -08:00
Valentin Churavy 7c64f6bf52 [MLIR] Add support for libMLIR.so
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.

This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so.  Note that not all libraries make sense to
be compiled into libMLIR.so.  In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).

Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components.  As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on

FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.

Previous version of this patch broke depencies on TableGen
targets.  This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names).  Avoiding object
libraries results in correct dependencies.

(updated by Stephen Neuendorffer)

Differential Revision: https://reviews.llvm.org/D73130
2020-03-06 13:25:18 -08:00
Stephen Neuendorffer 1c82dd39f9 [MLIR] Ensure that target_link_libraries() always has a keyword.
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior.  This patch explicitly specifies a
keyword when using target_link_libraries().

Differential Revision: https://reviews.llvm.org/D75725
2020-03-06 09:14:01 -08:00
Stephen Neuendorffer 798e661567 Revert "[MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries."
This reverts commit 7a6c689771.
This breaks the build with cmake 3.13.4, but succeeds with cmake 3.15.3
2020-02-29 11:52:08 -08:00
Stephen Neuendorffer dd046c9612 Revert "[MLIR] Add support for libMLIR.so"
This reverts commit e17d9c11d4.
It breaks the build.
2020-02-29 11:09:21 -08:00
Stephen Neuendorffer bc991500ac Revert "[MLIR] Fixes for BUILD_SHARED_LIBS=on"
This reverts commit 777e97cc1a.
2020-02-29 11:09:21 -08:00
Stephen Neuendorffer 777e97cc1a [MLIR] Fixes for BUILD_SHARED_LIBS=on
Differential Revision: https://reviews.llvm.org/D75308
2020-02-29 10:47:28 -08:00
Valentin Churavy e17d9c11d4 [MLIR] Add support for libMLIR.so
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.

This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so.  Note that not all libraries make sense to
be compiled into libMLIR.so.  In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).

Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components.  As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on

FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.

Previous version of this patch broke depencies on TableGen
targets.  This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names).  Avoiding object
libraries results in correct dependencies.

(updated by Stephen Neuendorffer)

Differential Revision: https://reviews.llvm.org/D73130
2020-02-29 10:47:27 -08:00
Stephen Neuendorffer 7a6c689771 [MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries.
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used.  This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call.  This is preparation for
properly dealing with creating libMLIR.so as well.

Differential Revision: https://reviews.llvm.org/D74864
2020-02-29 10:47:26 -08:00
Stephen Neuendorffer dc1056a3f1 Revert "[MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries."
This reverts commit 2f265e3528.
2020-02-28 14:13:30 -08:00
Stephen Neuendorffer c6f3fc4999 Revert "[MLIR] Add support for libMLIR.so"
This reverts commit 1246e86716.
2020-02-28 12:17:39 -08:00
Valentin Churavy 1246e86716 [MLIR] Add support for libMLIR.so
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.

This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so.  Note that not all libraries make sense to
be compiled into libMLIR.so.  In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).

Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components.  As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on

FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components

(updated by Stephen Neuendorffer)

Differential Revision: https://reviews.llvm.org/D73130
2020-02-28 11:35:19 -08:00
Stephen Neuendorffer 2f265e3528 [MLIR] Move from using target_link_libraries to LINK_LIBS for llvm libraries.
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used.  This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call.  This is preparation for
properly dealing with creating libMLIR.so as well.

Differential Revision: https://reviews.llvm.org/D74864
2020-02-28 11:35:17 -08:00
Stephen Neuendorffer 5869552821 [MLIR] Refactor handling of dialect libraries
Instead of creating extra libraries we don't really need, collect a
list of all dialects and use that instead.

Differential Revision: https://reviews.llvm.org/D75221
2020-02-28 11:35:16 -08:00
Mehdi Amini c64770506b Remove static registration for dialects, and the "alwayslink" hack for passes
In the previous state, we were relying on forcing the linker to include
all libraries in the final binary and the global initializer to self-register
every piece of the system. This change help moving away from this model, and
allow users to compose pieces more freely. The current change is only "fixing"
the dialect registration and avoiding relying on "whole link" for the passes.
The translation is still relying on the global registry, and some refactoring
is needed to make this all more convenient.

Differential Revision: https://reviews.llvm.org/D74461
2020-02-12 09:13:02 +00:00
Jacques Pienaar 7baf2a434c [mlir] Start Shape dialect
* Add basic skeleton for Shape dialect;
* Add description of types and ops to be used;

Differential Revision: https://reviews.llvm.org/D73944
2020-02-11 14:42:59 -08:00
David Truby 63c8972562 [MLIR] Add OpenMP dialect with barrier operation
Summary:
Barrier is a simple operation that takes no arguments and returns
nothing, but implies a side effect (synchronization of all threads)

Reviewers: jdoerfert

Subscribers: mgorny, guansong, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72400
2020-01-29 11:34:58 +00:00
River Riddle ffde975e21 NFC: Move AffineOps dialect to the Dialect sub-directory.
PiperOrigin-RevId: 264482571
2019-08-20 15:36:39 -07:00
Nicolas Vasilache b628194013 Move Linalg and VectorOps dialects to the Dialect subdir - NFC
PiperOrigin-RevId: 264277760
2019-08-19 17:11:38 -07:00
River Riddle ba0fa92524 NFC: Move LLVMIR, SDBM, and StandardOps to the Dialect/ directory.
PiperOrigin-RevId: 264193915
2019-08-19 11:01:25 -07:00
Alex Zinenko 60965b4612 Move GPU dialect to {lib,include/mlir}/Dialect
Per tacit agreement, individual dialects should now live in lib/Dialect/Name
with headers in include/mlir/Dialect/Name and tests in test/Dialect/Name.

PiperOrigin-RevId: 259896851
2019-07-25 00:41:17 -07:00
Lei Zhang d36dd94c75 NFC: Move SPIR-V dialect to Dialect/ subdirectory
PiperOrigin-RevId: 258345603
2019-07-16 13:45:09 -07:00
Nicolas Vasilache cca53e8527 Extract std.for std.if and std.terminator in their own dialect
These ops should not belong to the std dialect.
This CL extracts them in their own dialect and updates the corresponding conversions and tests.

PiperOrigin-RevId: 258123853
2019-07-16 13:43:18 -07:00
Stella Laurenzo d4dcf7de9e Move Quantization -> Dialect/QuantOps, FxpMathOps -> Dialect/FxpMathOps.
Adding the additional layer of directory was discussed offline and matches the Target/ tree. The names match the defacto convention we seem to be following where the C++ namespace is ^(.+)Ops/$ matched against the directory name.

    This is in preparation for patching the Quantizer into this tree, which would have been confusing without moving the Quantization dialect to its more proper home. It is left to others to move other dialects if desired.

    Tested:
      ninja check-mlir

--

PiperOrigin-RevId: 248171982
2019-05-20 13:41:55 -07:00
Jacques Pienaar 1273af232c Add build files and update README.
* Add initial version of build files;
    * Update README with instructions to download and build MLIR from github;

--

PiperOrigin-RevId: 241102092
2019-03-30 11:23:22 -07:00