Implementation is based on the "expected type" as used for
designated-initializers in braced init lists. This means it can deduce the type
in some cases where it's not written:
void foo(Widget);
foo({ /*help here*/ });
Only basic constructor calls are in scope of this patch, excluded are:
- aggregate initialization (no help is offered for aggregates)
- initializer_list initialization (no help is offered for these constructors)
Fixes https://github.com/clangd/clangd/issues/306
Differential Revision: https://reviews.llvm.org/D116317
This avoids an unnecessary copy required by 'return OS.str()', allowing
instead for NRVO or implicit move. The .str() call (which flushes the
stream) is no longer required since 65b13610a5,
which made raw_string_ostream unbuffered by default.
Differential Revision: https://reviews.llvm.org/D115374
The default for min is changed to 1. The behaviour of -mvscale-{min,max}
in Clang is also changed such that 16 is the max vscale when targeting
SVE and no max is specified.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D113294
Currently, BeforeExecute is called before BeginSourceFile which does not allow
using PP in the callbacks. Change the ordering to ensure it is possible.
This is a prerequisite for D114370.
Originated from a discussion with @kadircet.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D114525
Add an AtomicScopeModel for HIP and support for OpenCL builtins
that are missing in HIP.
Patch by: Michael Liao
Revised by: Anshil Ghandi
Reviewed by: Yaxun Liu
Differential Revision: https://reviews.llvm.org/D113925
This removes the ability to disable roundtripping in assert builds.
(Roundtripping happens by default in assert builds both before and after
this patch.)
The CLANG_ROUND_TRIP_CC1_ARGS was added as an escape hatch 9 months ago
in https://reviews.llvm.org/D97462, with a FIXME to remove it eventually.
It's probably time to remove it.
Differential Revision: https://reviews.llvm.org/D114120
With this,
void f() { __asm__("mov eax, ebx"); }
now compiles with clang with -masm=intel.
This matches gcc.
The flag is not accepted in clang-cl mode. It has no effect on
MSVC-style `__asm {}` blocks, which are unconditionally in intel
mode both before and after this change.
One difference to gcc is that in clang, inline asm strings are
"local" while they're "global" in gcc. Building the following with
-masm=intel works with clang, but not with gcc where the ".att_syntax"
from the 2nd __asm__() is in effect until file end (or until a
".intel_syntax" somewhere later in the file):
__asm__("mov eax, ebx");
__asm__(".att_syntax\nmovl %ebx, %eax");
__asm__("mov eax, ebx");
This also updates clang's intrinsic headers to work both in
-masm=att (the default) and -masm=intel modes.
The official solution for this according to "Multiple assembler dialects in asm
templates" in gcc docs->Extensions->Inline Assembly->Extended Asm
is to write every inline asm snippet twice:
bt{l %[Offset],%[Base] | %[Base],%[Offset]}
This works in LLVM after D113932 and D113894, so use that.
(Just putting `.att_syntax` at the start of the snippet works in some but not
all cases: When LLVM interpolates in parameters like `%0`, it uses at&t or
intel syntax according to the inline asm snippet's flavor, so the `.att_syntax`
within the snippet happens to late: The interpolated-in parameter is already
in intel style, and then won't parse in the switched `.att_syntax`.)
It might be nice to invent a `#pragma clang asm_dialect push "att"` /
`#pragma clang asm_dialect pop` to be able to force asm style per snippet,
so that the inline asm string doesn't contain the same code in two variants,
but let's leave that for a follow-up.
Fixes PR21401 and PR20241.
Differential Revision: https://reviews.llvm.org/D113707
Change the error message to use ignorelist, and changed some variable and function
names in related code and test.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D113189
Add new triple and target info for ‘spirv32’ and ‘spirv64’ and,
thus, enabling clang (LLVM IR) code emission to SPIR-V target.
The target for SPIR-V is mostly reused from SPIR by derivation
from a common base class since IR output for SPIR-V is mostly
the same as SPIR. Some refactoring are made accordingly.
Added and updated tests for parts that are different between
SPIR and SPIR-V.
Patch by linjamaki (Henry Linjamäki)!
Differential Revision: https://reviews.llvm.org/D109144
The PragmaAssumeNonNullHandler (and maybe others) passes an invalid
SourceLocation to its callback, hence PrintPreprocessedOutput does not
know how many lines to insert between the previous token and the
pragma and does nothing.
With this patch we instead assume that the unknown token is on the same
line as the previous such that we can call the procedure that also emits
semantically significant whitespace.
Fixes bug reported here: https://reviews.llvm.org/D104601#3105044
This is reported by msvc as
warning C6287: redundant code: the left and right subexpressions are identical
EmittedDirectiveOnThisLine implies EmittedTokensOnThisLine
making this an NFC change. To be on the safe side and because both of
them are checked at other places as well, we continue to check both.
Compiler warning reported here:
https://reviews.llvm.org/D104601#2957333
Now in libcxx and clang, all the coroutine components are defined in
std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace. So the existing codes wouldn't be break after update
compiler.
And in case the compiler found std::coroutine_traits and
std::experimental::coroutine_traits at the same time, it would emit an
error for it.
The support for looking up std::experimental::coroutine_traits would be
removed in Clang16.
Reviewed By: lxfind, Quuxplusone
Differential Revision: https://reviews.llvm.org/D108696
Downstream users may have Clang plugins. By default these plugins run
after the main action if they are specified on the command line.
Since these plugins are ASTConsumers, presumably they inspect the AST.
So we shouldn't clear it if any plugins run after the main action.
Reviewed By: dblaikie, hans
Differential Revision: https://reviews.llvm.org/D112190
Currently we have a way to run a plugin if specified on the command line
after the main action, and ways to unconditionally run the plugin before
or after the main action, but no way to run a plugin if specified on the
command line before the main action.
This introduces the missing option.
This is helpful because -clear-ast-before-backend clears the AST before
codegen, while some plugins may want access to the AST.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D112096
When using explicit Clang modules, some declarations might unexpectedly become invisible.
This is caused by the mechanism that loads PCM files passed via `-fmodule-file=<path>` and creates an `IdentifierInfo` for the module name. The `IdentifierInfo` creation takes place when the `ASTReader` is in a weird state, with modules that are loaded but not yet set up properly. This patch delays the creation of `IdentifierInfo` until the `ASTReader` is done with reading the PCM.
Note that the `-fmodule-file=<name>=<path>` form of the argument doesn't suffer from this issue, since it doesn't create `IdentifierInfo` for the module name.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D111543
Previously, we reported the same value as for C17, now we report 202000L, which
is the same value currently used by GCC.
Once C23 ships, this value will be bumped to the correct date.
During explicit modular build, PCM files are typically specified via the `-fmodule-file=<path>` command-line option. Early during the compilation, Clang uses the `ASTReader` to read their contents and caches the result so that the module isn't loaded implicitly later on. A listener is attached to the `ASTReader` to collect names of the modules read from the PCM files. However, if the PCM has already been loaded previously via PCH:
1. the `ASTReader` doesn't do anything for the second time,
2. the listener is not invoked at all,
3. the module load result is not cached,
4. the compilation fails when attempting to load the module implicitly later on.
This patch solves this problem by attaching the listener to the `ASTReader` for PCH reading as well.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D111560
For dependency scanning, it would be useful to collect header search paths (provided on command-line via `-I` and friends) that were actually used during preprocessing. This patch adds that feature to `HeaderSearch` along with a new remark that reports such paths as they get used.
Previous version of this patch tried to use the existing `LookupFileCache` to report used paths via `HitIdx`. That doesn't work for `ComputeUserEntryUsage` (which is intended to be called *after* preprocessing), because it indexes used search paths by the file name. This means the values get overwritten when the code contains `#include_next`.
Note that `HeaderSearch` doesn't use `HeaderSearchOptions::UserEntries` directly. Instead, `InitHeaderSearch` pre-processes them (adds platform-specific paths, removes duplicates, removes paths that don't exist) and creates `DirectoryLookup` instances. This means we need a mechanism for translating between those two. It's not possible to go from `DirectoryLookup` back to the original `HeaderSearch`, so `InitHeaderSearch` now tracks the relationships explicitly.
Depends on D111557.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D102923
This patch propagates the import `SourceLocation` into `HeaderSearch::lookupModule`. This enables remarks on search path usage (implemented in D102923) to point to the source code that initiated header search.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D111557
Without this, the combination of `-ast-dump=json` and `-ast-dump-filter FILTER` produces invalid JSON: the first line is a string that says `Dumping $SOME_DECL_NAME: `.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D108441
This patch adds two flags to be supported for the new runtime. The flags
are `-fopenmp-assume-threads-oversubscription` and
-fopenmp-assume-teams-oversubscription`. These add global values that
can be checked by the work sharing runtime functions to make better
judgements about how to distribute work between the threads.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D111348
Modify the IfStmt node to suppoort constant evaluated expressions.
Add a new ExpressionEvaluationContext::ImmediateFunctionContext to
keep track of immediate function contexts.
This proved easier/better/probably more efficient than walking the AST
backward as it allows diagnosing nested if consteval statements.
A followup to D110201.
For example, we'd set OptimizationRemarkMissed's Regex to '.*' when
encountering -Rpass. Normally this doesn't actually affect remarks we
emit because in clang::ProcessWarningOptions() we'll separately look at
all -R arguments and turn on/off corresponding diagnostic groups.
However, this is reproducible with -round-trip-args.
Reviewed By: JamesNagurne
Differential Revision: https://reviews.llvm.org/D110673
Based on feedback from Paul Robinson on 38c09ea that the 'mangled' mode
is only useful as an LLVM-developer-internal tool in combination with
llvm-dwarfdump --verify, so demote that to a frontend-only (not driver)
option. The driver support is simply -g{no-,}simple-template-names to
switch on simple template names, without the option to use the mangled
template name scheme there.
This is to build the foundation of a new debug info feature to use only
the base name of template as its debug info name (eg: "t1" instead of
the full "t1<int>"). The intent being that a consumer can still retrieve
all that information from the DW_TAG_template_*_parameters.
So gno-simple-template-names is business as usual/previously ("t1<int>")
=simple is the simplified name ("t1")
=mangled is a special mode to communicate the full information, but
also indicate that the name should be able to be simplified. The data
is encoded as "_STNt1|<int>" which will be matched with an
llvm-dwarfdump --verify feature to deconstruct this name, rebuild the
original name, and then try to rebuild the simple name via the DWARF
tags - then compare the latter and the former to ensure that all the
data necessary to fully rebuild the name is present.