Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
This patch adds the functionalities to print MDNode in tree shape. For
example, instead of printing a MDNode like this:
```
<0x5643e1166888> = !DILocalVariable(name: "foo", arg: 2, scope: <0x5643e11c9740>, file: <0x5643e11c6ec0>, line: 8, type: <0x5643e11ca8e0>, flags: DIFlagPublic | DIFlagFwdDecl, align: 8)
```
The printTree/dumpTree functions can give you:
```
<0x5643e1166888> = !DILocalVariable(name: "foo", arg: 2, scope: <0x5643e11c9740>, file: <0x5643e11c6ec0>, line: 8, type: <0x5643e11ca8e0>, flags: DIFlagPublic | DIFlagFwdDecl, align: 8)
<0x5643e11c9740> = distinct !DISubprogram(scope: null, spFlags: 0)
<0x5643e11c6ec0> = distinct !DIFile(filename: "file.c", directory: "/path/to/dir")
<0x5643e11ca8e0> = distinct !DIDerivedType(tag: DW_TAG_pointer_type, baseType: <0x5643e11668d8>, size: 1, align: 2)
<0x5643e11668d8> = !DIBasicType(tag: DW_TAG_unspecified_type, name: "basictype")
```
Which is useful when using it in debugger. Where sometimes printing the
whole module to see all MDNodes is too expensive.
Differential Revision: https://reviews.llvm.org/D110113
This patch introduces the vector-predicated version of the
experimental_vector_splice intrinsic [1] at the IR level. It considers
the active vector length for both vectors and and uses a vector mask to
disable certain lanes in the result.
[1] https://reviews.llvm.org/D94708
Change originally authored by Vineet Kumar <vineet.kumar@bsc.es>
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D103898
This patch is for fixing potential insertElement-related bugs like D93818.
```
V = UndefValue::get(VecTy);
for(...)
V = Builder.CreateInsertElementy(V, Elt, Idx);
=>
V = PoisonValue::get(VecTy);
for(...)
V = Builder.CreateInsertElementy(V, Elt, Idx);
```
Like above, this patch changes the placeholder V to poison.
The patch will be separated into several commits.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D110311
- This patch adds in the GOFF mangling support to the LLVM data layout string. A corresponding additional line has been added into the data layout section in the language reference documentation.
- Furthermore, this patch also sets the right data layout string for the z/OS target in the SystemZ backend.
Reviewed By: uweigand, Kai, abhina.sreeskantharajan, MaskRay
Differential Revision: https://reviews.llvm.org/D109362
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
llvm.vp.select extends the regular select instruction with an explicit
vector length (%evl).
All lanes with indexes at and above %evl are
undefined. Lanes below %evl are taken from the first input where the
mask is true and from the second input otherwise.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D105351
Generate btf_tag annotations for function parameters.
A field "annotations" is introduced to DILocalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DILocalVariable(name: "info",, arg: 1, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106620
Generate btf_tag annotations for DIGlobalVariable.
A field "annotations" is introduced to DIGlobalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DIGlobalVariable(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106619
In LLVM IR, `AlignmentBitfieldElementT` is 5-bit wide
But that means that the maximal alignment exponent is `(1<<5)-2`,
which is `30`, not `29`. And indeed, alignment of `1073741824`
roundtrips IR serialization-deserialization.
While this doesn't seem all that important, this doubles
the maximal supported alignment from 512MiB to 1GiB,
and there's actually one noticeable use-case for that;
On X86, the huge pages can have sizes of 2MiB and 1GiB (!).
So while this doesn't add support for truly huge alignments,
which i think we can easily-ish do if wanted, i think this adds
zero-cost support for a not-trivially-dismissable case.
I don't believe we need any upgrade infrastructure,
and since we don't explicitly record the IR version,
we don't need to bump one either.
As @craig.topper speculates in D108661#2963519,
this might be an artificial limit imposed by the original implementation
of the `getAlignment()` functions.
Differential Revision: https://reviews.llvm.org/D108661
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Reland with additional fixes for llvm/unittests/IR/DebugTypeODRUniquingTest.cpp.
Differential Revision: https://reviews.llvm.org/D106615
This patch adds vector-predicated ("VP") reduction intrinsics corresponding to
each of the existing unpredicated `llvm.vector.reduce.*` versions. Unlike the
unpredicated reductions, all VP reductions have a start value. This start value
is returned when the no vector element is active.
Support for expansion on targets without native vector-predication support is
included.
This patch is based on the ["reduction
slice"](https://reviews.llvm.org/D57504#1732277) of the LLVM-VP reference patch
(https://reviews.llvm.org/D57504).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D104308
AttributeList::hasAttribute() is confusing, use clearer methods like
hasParamAttr()/hasRetAttr().
Add hasRetAttr() since it was missing from AttributeList.
It's entirely possible (because it actually happened) for a bool
variable to end up with a 256-bit DW_AT_const_value. This came about
when a local bool variable was initialized from a bitfield in a
32-byte struct of bitfields, and after inlining and constant
propagation, the variable did have a constant value. The sequence of
optimizations had it carrying "i256" values around, but once the
constant made it into the llvm.dbg.value, no further IR changes could
affect it.
Technically the llvm.dbg.value did have a DIExpression to reduce it
back down to 8 bits, but the compiler is in no way ready to emit an
oversized constant *and* a DWARF expression to manipulate it.
Depending on the circumstances, we had either just the very fat bool
value, or an expression with no starting value.
The sequence of optimizations that led to this state did seem pretty
reasonable, so the solution I came up with was to invent a DWARF
constant expression folder. Currently it only does convert ops, but
there's no reason it couldn't do other ops if that became useful.
This broke three tests that depended on having convert ops survive
into the DWARF, so I added an operator that would abort the folder to
each of those tests.
Differential Revision: https://reviews.llvm.org/D106915
This patch allows iterating typed enum via the ADT/Sequence utility.
It also changes the original design to better separate concerns:
- `StrongInt` only deals with safe `intmax_t` operations,
- `SafeIntIterator` presents the iterator and reverse iterator
interface but only deals with safe `StrongInt` internally.
- `iota_range` only deals with `SafeIntIterator` internally.
This design ensures that operations are always valid. In particular,
"Out of bounds" assertions fire when:
- the `value_type` is not representable as an `intmax_t`
- iterator operations make internal computation underflow/overflow
- the internal representation cannot be converted back to `value_type`
Differential Revision: https://reviews.llvm.org/D106279
Continuing from D105763, this allows placing certain properties
about attributes in the TableGen definition. In particular, we
store whether an attribute applies to fn/param/ret (or a combination
thereof). This information is used by the Verifier, as well as the
ForceFunctionAttrs pass. I also plan to use this in LLParser,
which also duplicates info on which attributes are valid where.
This keeps metadata about attributes in one place, and makes it
more likely that it stays in sync, rather than in various
functions spread across the codebase.
Differential Revision: https://reviews.llvm.org/D105780
These currently always require a type parameter. The bitcode reader
already upgrades old bitcode without the type parameter to use the
pointee type.
In cases where the caller does not have byval but the callee does, we
need to follow CallBase::paramHasAttr() and also look at the callee for
the byval type so that CallBase::isByValArgument() and
CallBase::getParamByValType() are in sync. Do the same for preallocated.
While we're here add a corresponding version for inalloca since we'll
need it soon.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D104663
This patch adds intrinsic definitions and SDNodes for predicated
load/store/gather/scatter, based on the work done in D57504.
Reviewed By: simoll, craig.topper
Differential Revision: https://reviews.llvm.org/D99355
This patch implements vector-predicated intrinsics on IR level for fadd,
fsub, fmul, fdiv and frem. There operate in the default floating-point
environment. We will use constrained fp operand bundles for constrained
vector-predicated fp math (D93455).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93470
`VPIntrinsic::getDeclarationForParams` creates a vp intrinsic
declaration for parameters you want to call it with. This is in
preparation of a new builder class that makes emitting vp intrinsic code
nearly as convenient as using a plain ir builder (aka `VectorBuilder`,
to be used by D99750).
Reviewed By: frasercrmck, craig.topper, vkmr
Differential Revision: https://reviews.llvm.org/D102686
Some existing places use getPointerElementType() to create a copy of a
pointer type with some new address space.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D103429
Parameter positions seem like they should be unsigned.
While there, make function names lowercase per coding standards.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D103224
The operation of some VP intrinsics do/will not map to regular
instruction opcodes. Returning 'None' seems more intuitive here than
'Instruction::Call'.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D102778
This was reverted to mitigate mitigate miscompiles caused by
the logical and/or to bitwise and/or fold. Reapply it now that
the underlying issue has been fixed by D101191.
-----
This patch folds more operations to poison.
Alive2 proof: https://alive2.llvm.org/ce/z/mxcb9G (it does not contain tests about div/rem because they fold to poison when raising UB)
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D92270