The two names are similar enough that they might lead to confusion.
The output of readobj clarifies but I missed it when I originally
committed this. Found while linking FreeBSD userland with lld.
llvm-svn: 250739
Given the name, it is natural for this function to compute the full target.
This will simplify SHF_MERGE handling by allowing getLocalRelTarget to
centralize the addend logic.
llvm-svn: 250731
The reason of collecting all undefines in vector is that during reading files we already need to have Symtab created. Or like was done in that patch - to put undefines from scripts somewhere to delay Symtab.addUndefinedOpt() call.
Differential Revision: http://reviews.llvm.org/D13870
llvm-svn: 250711
Instead of specifically creating .plt entries for weak undef symbols, mirror
the logic in r250584, and use canBePreempted to determine is a REL24 relocation
needs a .plt entry. This might cause relocateOne to be called for a weak undef
symbol, with a REL24 relocation, but ignore this as a special case (this will
cause SA == 0, which won't happen under any other circumstance).
llvm-svn: 250597
There is sometimes no need to generate relocation via PLT.
Example - when symbol is not undefined and we are not creating shared library. Then we can create relative relocation instead of referencing and creating PLT records.
Differential Revision: http://reviews.llvm.org/D13835
llvm-svn: 250584
If one file is MIPS64EL, all files are MIPS64EL, and vice versa.
We do not have to look up MIPS-ness for each file. Currently we
do not support 64-bit MIPS, so the config value is always false.
llvm-svn: 250566
When we have a R_PPC64_ADDR64 for a weak undef symbol, which thus resolves to
0, and we're creating a shared library, we need to make sure that it stays 0
(because code that conditionally calls the weak function tests for this).
Unfortunately, we were creating a R_PPC64_RELATIVE for these relocation
targets, making the address of the undefined weak symbol equal to the base
address of the shared library (which is non-zero). In general, we should not be
creating RelativeReloc relocs for undef weak symbols.
llvm-svn: 250558
R_PPC64_TOC does not have an associated symbol, but does have a non-zero VA
that target-specific code must compute using some non-trivial rule. We
handled this as a special case in PPC64TargetInfo::relocateOne, where
we knew to write this special address, but that did not work when creating shared
libraries. The special TOC address needs to be the subject of a
R_PPC64_RELATIVE relocation, and so we also need to know how to encode this
special address in the addend of that relocation.
Thus, some target-specific logic is necessary when creating R_PPC64_RELATIVE as
well. To solve this problem, we teach getLocalRelTarget to handle R_PPC64_TOC
as a special case. This allows us to remove the special case in
PPC64TargetInfo::relocateOne (simplifying code there), and naturally allows the
existing logic to do the right thing when creating associated R_PPC64_RELATIVE
relocations for shared libraries.
llvm-svn: 250555
When I initially implemented PPC64TargetInfo::isRelRelative, I included a fixed
set of relative relocations, and made the default false. In retrospect, this
seems unwise in two respects: First, most PPC64 relocations are relative
(either to the base address, the TOC, etc.). Second, most relocation targets
are not appropriate for R_PPC64_RELATIVE (which writes a 64-bit absolute
address). Thus, back off, and include only those relocations for which we test
(or soon will), and are obviously appropriate for R_PPC64_RELATIVE.
llvm-svn: 250540
This patch is to use ELFT instead of Is64Bits to template OutputSection
and its subclasses. This increases code size slightly because it creates
two identical functions for some classes, but that's only 20 KB out of
33 MB, so it's negligible.
This is as per discussion with Rafael. He's not fan of the idea but OK
with this. We'll revisit later to this topic.
llvm-svn: 250466
String table is added to end of the file so that all the other sections
are finalized before string table. But we can just add section names to
the string table before calling finalize() on any section instead.
llvm-svn: 250463
If a section name is valid as a C identifier (which is rare because of
the leading '.'), linkers are expected to define __start_<secname> and
__stop_<secname> symbols. They are at beginning and end of the section,
respectively. This is not requested by the ELF standard, but GNU ld and
gold provide this feature.
llvm-svn: 250432
Unfortunately, the check was not as dead as I had thought, and adjusting the
starting VA again exposed the problem. We end up trying to relocate the bl
(using a 24-bit relative offset) to a symbol address of zero, and in general,
that does not fit.
Thus, reverting for now, and adding a test case.
llvm-svn: 250423
When a relocation points to a SHF_MERGE section, the addend has special meaning.
It should be used to find what in the section the relocation points to. It
should not be added to the output position.
Centralizing it means that the above rule will be implemented once, not once
per target.
llvm-svn: 250421
After some additional post-commit (post-revert) discussion and research, this
reverts, in part, r250205, so the ABI-recommended starting address can be used
on PPC64 (as is done by other linkers).
Also, this addresses the FIXME in ELF/Writer.cpp by making VAStart a
target-dependent property.
llvm-svn: 250378
If an argument for --entry is a number, that's not a symbol name but
an absolute address. If that's the case, the address is directly set
to ELF header's e_entry.
llvm-svn: 250334
Previously, we used input section names as output section names.
That resulted that we created lots of sections for comdat
or -f{function,data}-section sections.
This patch reduces the number of sections by dropping suffix from
all section names which start with ".text.", ".rodata.", ".data."
or ".bss.". GNU linker does this using the internal linker script,
but for LLD I chose to do that directly.
Interestingly, this makes the linker faster. Time to link Clang
is this.
Before:
real 0m0.537s
user 0m0.433s
sys 0m0.104s
After:
real 0m0.390s
user 0m0.268s
sys 0m0.120s
It make sense because previously we created 57659 sections now only 27.
llvm-svn: 250315
- Make the `MipsTargetInfo` template class with `ELFType` argument. Use
the argument to select an appropriate relocation type and read/write
routines.
- Add template function `add32` to add-and-write relocation value in
both big and little endian cases. Keep the `add32le` to reduce code
changes.
Differential Revision: http://reviews.llvm.org/D13723
llvm-svn: 250297
The documentation says: "You may separate commands using semicolons",
so they seem to be optional.
Differential Revision: http://reviews.llvm.org/D13703
llvm-svn: 250223
Suggested by Rafael in his review of r250100. As Rafael points out, this may
grow into a switch in the future, but regardless, calling this on files for
other architectures is unnecessary.
llvm-svn: 250209
This has turned out to be unnecessary, and while some ability to set VAStart
will be needed at some point, this is not clearly the right direction.
llvm-svn: 250205
"finalize" does not give a hint about what that function is actually
going to do. This patch make it more specific by renaming scanShlibUndefined.
Also add a comment that we basically ignore undefined symbols in DSOs except
this function.
llvm-svn: 250191
The fix in r250109 to ensure a strict weak ordering in the section sorting was
a bit overzealous. We only use the NOBITS comparison if either A or B is a
NOBITS section. Otherwise, we fall through to the target-specific ranking
function. Failure to do this causes the sorting to fail in cases where, for
example, a .dynamic section happens to end up in between .got and .toc, etc. in
the initial ordering (.dynamic has a type SHT_DYNAMIC, compared to SHT_PROGBITS
or SHT_NOBITS).
llvm-svn: 250190
BSD's DSO files have undefined symbol "__progname" which is defined
in crt1.o. On that system, both user programs and system shared
libraries depend on each other.
In general, we need to put symbols defined by user programs which are
referenced by shared libraries to user program's .dynsym.
http://reviews.llvm.org/D13637
llvm-svn: 250176
What was done:
1) .got.plt section is created for functions that requires PLT. .got.plt has 3 predefined empty entries now that are required for dynamic linker.
Also other new items created are configured to have correct jump to PLT[N].
2) PLT section now has PLT[0] entry, also others ones are configured to support PLT->GOT(.got.plt) calls.
3) Implemented .rel[a].plt sections (based on patch http://reviews.llvm.org/D13569).
4) Fixed plt relocations types (based on patch http://reviews.llvm.org/D13589).
NOTES:
The .plt.got zero entry is still empty now. According to ELF specification it should hold the address of the dynamic structure, referenced with the symbol
_DYNAMIC. The _DYNAMIC entry points to the .dynamic section which contains information used by the ELF interpreter to setup the binary.
Differential Revision: http://reviews.llvm.org/D13651
llvm-svn: 250169
Now all Target<Arch> classes are used only in Target.cpp.
We can put them in an anonymous namespace. In order to avoid
merge conflict with other people's patches, I'll do that later.
llvm-svn: 250168
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
Under the PPC64 ELF ABI, functions that might call into other modules (and,
thus, need to load a different TOC base value into %r2), need to restore the
old value after the call. The old value is saved by the .plt code, and the
caller only needs to include a nop instruction after the call, which the linker
will transform into a TOC restore if necessary.
In order to do this the relocation handler needs two things:
1. It needs to know whether the call instruction it is modifying is targeting
a .plt stub that will load a new TOC base value (necessitating a restore after
the call).
2. It needs to know where the buffer ends, so that it does not accidentally
run off the end of the buffer when looking for the 'nop' instruction after the
call.
Given these two pieces of information, we can insert the restore instruction in
place of the following nop when necessary.
llvm-svn: 250110
As pointed out by Rui (post-commit review), we need to always return based on
the section type when the types differ to ensure a strict weak ordering.
llvm-svn: 250109
This is mostly an adaptation of the code in LLVM's
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp, and handles a sufficient
number of relocations to link a 'hello world' program on big-Endian PPC64/Linux
(ELF v1 ABI).
llvm-svn: 250101
PPC64 has several special sections that are intended to be accessed from the
TOC base pointer. When a .got is present, the TOC base pointer is .got + 0x8000
(as specified by the ABI). Furthermore, the glibc startup code contains an
assumption that a 16-bit relocation can hold the offset from the TOC base value
to the beginning of the .toc section. Thus, we need to make sure that .toc
appears after .got. This much, at least, is required in practice. The other
PPC64 special sections (.toc, .toc1, .opd, etc.) should also be close by to
optimize access by smaller TOC-base-pointer offsets.
llvm-svn: 250100
In order to actually verify the condition, we have to use a weak symbol.
If an undefined symbol is not used at all, it is naturally ignored not by
the code for --as-needed but by the code for something else.
llvm-svn: 250062
This patch adds AsNeeded and IsUsed bool fields to SharedFile. AsNeeded bit
is set if the DSO is enclosed with --as-needed and --no-as-needed. IsUsed
bit is off by default. When we adds a symbol to the symbol table for dynamic
linking, we set its SharedFile's IsUsed bit.
If AsNeeded is set but IsUsed is not set, we don't want to write that
file's SO name to DT_NEEDED field.
http://reviews.llvm.org/D13579
llvm-svn: 249998
In the linker script, -l and = have the same meaning as in the command line.
In addition to that, if a path is not absolute, the path needs to be searched
from the search paths. This patch implements them.
llvm-svn: 249967
Previously, each ArgParser owned a BumpPtrAllocator, and arguments parsed
by an ArgParser would refer strings allocated using the BumpPtrAllocator
only when response files were used. This could cause a subtle bug because
such ownership was not obvious.
This patch moves the ownership from ArgParser to Driver and make the
ownership explicit.
llvm-svn: 249963
Previously, we reserved the first page for the program header, so no
sections would be written to very beginning of the output file.
FreeBSD requires .interp section be exist on the first page, so that
was not good.
This patch calculates the size of the program header and then assign
addresses to the sections. Now the first section is located next to
the program header. Because the first section is .interp, it's very
likely to be on the first page.
llvm-svn: 249957
SymbolTable was not a right place for initialization. We had to do that
because Driver didn't know what type of ELF objects are being handled.
We taught Driver that, so we can now move this code to Driver.
llvm-svn: 249904
SymbolTable was not a template class. Instead we had switch-case-based
type dispatch to call desired functions. We had to do that because
SymbolTable was created before we know what ELF type objects had been
passed.
Every time I tried to add a new function to the symbol table, I had to
define a dispatcher which consist of a single switch statement.
It also brought an restriction what the driver can do. For example,
we cannot add undefined symbols before any files are added to the symbol
table. That's because no symbols can be added until the symbol table
knows the ELF type, but when it knows about that, it's too late.
In this patch, the driver makes a decision on what ELF type objects
are being handled. Then the driver creates a SymbolTable object for
an appropriate ELF type.
http://reviews.llvm.org/D13544
llvm-svn: 249902