basic microarchitecture names, and add support (with tests) for parsing
all of the masic microarchitecture names for CPUs documented to be
accepted by GCC with -march. I didn't go back through the 32-bit-only
old microarchitectures, but this at least brings the recent architecture
names up to speed. This is essentially the follow-up to the LLVM commit
r223769 which did similar cleanups for the LLVM CPUs.
One particular benefit is that you can now use -march=westmere in Clang
and get the LLVM westmere processor which is a different ISA variant (!)
and so quite significant.
Much like with r223769, I would appreciate the Intel folks carefully
thinking about the macros defined, names used, etc for the atom chips
and newest primary x86 chips. The current patterns seem quite strange to
me, especially here in Clang.
Note that I haven't replicated the per-microarchitecture macro defines
provided by GCC. I'm really opposed to source code using these rather
than using ISA feature macros.
llvm-svn: 223776
This reverts commit r223455. It's been succesfully argued that
-fexceptions (at the driver level) is a misnomer and has little to do
with -fobjc-exceptions.
llvm-svn: 223723
Clang attempted to replicate a GCC bug: -fobjc-exceptions forces
-fexceptions to be enabled. However, this has unintended effects and
other awkard side effects that Clang doesn't "correctly" ape (e.g. it's
impossible to turn off C++ exceptions in ObjC++ mode).
Instead, -f[no]objc-exceptions and -f[no]cxx-exceptions now have an
identical relationship with -f[no]exceptions.
llvm-svn: 223455
In many Linux environments (and similar), just-built applications won't run
correctly without making use of the current LD_LIBRARY_PATH environmental
variable in order to find dynamic libraries. Propagate it through the 'env'
command (hopefully this works on all platforms).
llvm-svn: 223219
This reverts commit r176892.
I had reverted this a while back to give Chromium more time to update, and
Nico says it should be OK now.
llvm-svn: 223108
I'm explicitly setting LC_ALL=C somewhat for documentation, but
hopefully this also removes some host variation from the test results.
llvm-svn: 223102
environment variable is changed to strange things out from under it.
Prior to r223099 in LLVM, these test cases would crash in various ways
(assert fails, stack exhaustion, etc.).
llvm-svn: 223100
I added this check a while back but then made a note to myself that it
should be completely unnecessary since iOS always uses PIC code-gen for
aarch64. Since I could never come up with any reason why it would be
necessary, I'm just going to remove it and we'll see if anything breaks.
rdar://problem/13627985
llvm-svn: 223097
Add neon-vfpv3 to allow specifying both at the same time. This is not an
option that GCC supports, but follows the same track and should be
non-controversial.
Change-Id: Id9ec157c835937d7d11ad0f49dbe5171fac17658
llvm-svn: 222933
When it's used without an argument, the default file name is
used. The same goes for /Fe.
Also, allow using /Fo, /Fa and /Fe with multiple inputs if they
don't have an argument.
llvm-svn: 222164
In particular, make SanitizerArgs responsible for parsing
and passing down to frontend -fsanitize-recover and
-fsanitize-undefined-trap-on-error flags.
Simplify parsing -f(no-)sanitize= flags parsing: get rid of
too complex filterUnsupportedKinds function.
No functionality change.
llvm-svn: 222105
This change removes libclang_rt.profile-pic-<arch>.a version of
profile runtime. Instead, it's sufficient to always build
libclang_rt.profile-<arch>.a with -fPIC, as it can be linked into
both executables and shared objects.
llvm-svn: 221952
The Autoconf build already does this, but it was never ported to
CMake. The host linker version affects the flags that Clang pass
to the linker, notably whether it passes -demangle or not.
http://reviews.llvm.org/D6239
llvm-svn: 221844
Summary:
This change makes the asan-coverge (formerly -mllvm -asan-coverge)
accessible via a clang flag.
Companion patch to LLVM is http://reviews.llvm.org/D6152
Test Plan: regression tests, chromium
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6153
llvm-svn: 221719
If clang was configured with a custom gcc toolchain (either by using GCC_INSTALL_PREFIX in cmake or the equivalent configure command), the path to the custom gcc toolchain path takes precedence to the one specified by -ccc-install-dir. This causes several regression tests to fail as they will be using an unexpected path. Adding the switch --gcc-toolchain="" in each test command is not enough as the hexagon toolchain implementation in the driver is not evaluating this argument. This commit modifies the hexagon toolchain to take the --gcc-toolchain="" argument into account when deciding the toolchain path, similarly to what is already done for other targets toolchains. Additionally, the faulty regression tests are modified in order to --gcc-toolchain="" be passed to the commands.
llvm-svn: 221535
The command line options are specified in a space-separated list that is an
argument to -dwarf-debug-flags, so that breaks if there are spaces in the
options. This feature came from Apple's internal version of GCC, so I went back
to check how llvm-gcc handled this and matched that behavior.
rdar://problem/18775420
llvm-svn: 221309
Change the LC_ID_DYLIB of ASan's dynamic libraries on OS X to be set to "@rpath/libclang_rt.asan_osx_dynamic.dylib" and similarly for iossim. Clang driver then sets the "-rpath" to be the real path to where clang currently has the dylib (because clang uses the relative path to its current executable). This means if you move the compiler or install the binary release, -fsanitize=address will link to the proper library.
Reviewed at http://reviews.llvm.org/D6018
llvm-svn: 221279
Add a fake linker in to a sysroot to use for testing the driver's tool
invocation. Should make the test behave similarly on all platforms. Addresses
review comments from Reid Kleckner from SVN r220546.
llvm-svn: 220625
This is a very basic toolchain. It supports cross-compiling Windows (primarily
inspired by the WoA target). It is meant to use clang with the LLVM IAS and a
binutils ld-compatible interface for the linker (eventually to be lld). It does
not perform any "standard" GCC lookup, nor does it perform any special
adjustments given that it is expected to be used in an environment where the
user is using MSVCRT (and as such Visual Studio headers) and the Windows SDK.
The primary runtime library is expected to be compiler-rt and the C++
implementation to be libc++.
It also expects that a sysroot has been setup given the usual Unix semantics
(standard C headers in /usr/include, all the import libraries available in
/usr/lib). It also expects that an entry point stub is present in /usr/lib
(crtbegin.obj for executables, crtbeginS.obj for shared libraries).
The entry point stub is responsible for running any GNU constructors.
llvm-svn: 220546
This is a sad thing to do, but all the alternatives look ugly.
Looks like there are legitimate cases when users may want to link
with sanitizer runtimes *and* -nodefaultlibs (and ensure they provide
replacements for system libraries). For example, this happens in libc++
test suite.
"-nodefaultlibs" is told to link only the libraries explicitly provided
by the user, and providing "-fsanitize=address" is a clear indication of
intention to link with ASan runtime.
We can't easily introduce analogue of "-print-libgcc-name": linking with
sanitizers runtimes is not trivial: some runtimes are split into several
archive libraries, which are required to be wrapped in
-whole-archive/-no-whole-archive.
If "-fsanitize=whatever" and "-nodefaultlibs" are provided, system library
dependencies of sanitizer runtimes (-lc/-ldl/-lpthread/-lrt) will *not* be
linked, and user would have to link them in manually. Note that this can
cause problems, as failing to provide "-lrt" might lead to crashes in runtime
during ASan initialization. But looks like we should bite this bullet.
See r218541 review thread for the discussion.
llvm-svn: 220455
-g1 on gcc (and also IBM's xlc) are documented to be very similar to
-gline-tables-only. Our -gline-tables-only might still be more verbose than -g1
on other compilers, but currently we treat -g1 as -g, and so we're producing
much more debug info at -g1 than everybody else. Treating -g1 as
-gline-tables-only brings us much closer to what everyone else is doing.
For more information, see the discussion on
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-October/039649.html
llvm-svn: 220311
This fixes crash report generation when filenames have spaces. It also
removes an awkward workaround that quoted *some* arguments when
generating crash reports.
llvm-svn: 220307
Clang would previously not get into C++ mode when invoked as 'clang++3.6'
(though clang++-3.6 would work).
I found the previous loop logic in this function confusing; hopefully this
makes it a little clearer.
Differential Revision: http://reviews.llvm.org/D5833
llvm-svn: 220052
Summary:
AddressSanitizer currently doesn't support this configuration, and binaries
built with it will just get into an infinite loop during startup.
Test Plan: Includes an automated test.
Reviewers: samsonov
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5764
llvm-svn: 219744
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result. The details are quite complex and hard to
determine statically, since branches in the code may exist in some
circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements clang options to enable this workaround in the backend.
The work-around code generation is not enabled by default.
llvm-svn: 219604